Construction of polynomial spline spaces over quadtree and octree T-meshes


Autoria(s): Brovka, Marina; López González, José Iván; Escobar Sánchez, José María; Cascón Barbero, José Manuel; Montenegro Armas, Rafael
Data(s)

07/04/2016

07/04/2016

2014

Resumo

<p>[EN]We present a new strategy for constructing tensor product spline spaces over quadtree and octree T-meshes. The proposed technique includes some simple rules for inferring local knot vectors to define spline blending functions. These rules allow to obtain for a given T-mesh a set of cubic spline functions that span a space with nice properties: it can reproduce cubic polynomials, the functions are C2-continuous, linearly independent, and spaces spanned by nested T-meshes are also nested. In order to span spaces with these properties applying the proposed rules, the T-mesh should fulfill the only requirement of being a 0-balanced quadtree or octree. ..</p>

Identificador

http://hdl.handle.net/10553/16401

721100

<p>10.1016/j.proeng.2014.10.370</p>

Idioma(s)

eng

Direitos

Acceso libre

by-nc-nd

Fonte

<p>Procedia Engineering. -- Oxford : Elsevier Ltd. -- ISSN 1877-7058. -- 82 (2014), pp. 21-33</p>

Palavras-Chave #12 Matemáticas #1204 Geometría #1206 Análisis numérico
Tipo

info:eu-repo/semantics/article