977 resultados para GC-TSD
Resumo:
根据固体与分子经验电子理论(EET)分析计算Ti-Al系金属间化合物及氢和氧影响下各相的价电子结构与解理能Gc,据此分析Ti-Al系金属间化合物的环境脆性(EE).结果表明,Ti3Al的氢脆是由于高氢含量下易生成性相引起的;TiAl的氢脆是由于固溶氢减弱含氢TiAl晶胞主干键并降低解理能引起的.而Ti3Al固溶氧使其键结构呈更严重的各向异性,导致Ti3Al脆性加剧;在氧含量较高时,氧化物TiO2形成将导致更加恶劣的脆性,而形成最强键nA和热稳定性较高的Al2O3将会有好的抗氧化性.同时也解释一些尚有争议的实验结果,并提出一些解决环境脆性的韧化途径.
Resumo:
Chromium hexacyanoferrate (CrHCF) modified grassy carbon electrode (GC) in different electrolytes was studied by cyclic voltammetry and in situ FTIR spectroelectrochemistry. The results indicate that the behavior of CrHCF firm can be understood in term of two structures: Cr1/3Cr(III)Fe(II)(CN), and MCr(III)Fe(II)(CN)(6). Besides,the film exists in amorphous state: the outer layer is porous film, while the inner layer is relatively compact. According to the electrochemical reaction of CrHCF, the lattice can contract and expand with the cations' diffusion.
Resumo:
Composite membrane modified electrodes were prepared by electrochemical deposition of platinum particles in a poly(o-phenylenediamine) (PPD) him coated on glassy carbon (GC) electrodes. The modified electrodes showed high catalytic activity towards the reduction of oxygen and hydrogen peroxide. A four-electron transfer process predominated the reduction process. The pH dependence and the stability of the electrodes were also studied.
Resumo:
Flory solution theory modified by Hamada et al. (Macromolecules, 1980, 13, 729) was used to predict the miscibility of blends of poly(ethylene oxide) with poly(methyl methacrylate) (PEO-aPMMA) and with poly(vinyl acetate) (PEO-PVAc). Interaction parameters of a PEO-aPMMA blend with the weight ratio of PEO/aPMMA = 50/50 at the temperature range of 393-433 K and PEO-PVAc blends with different compositions and temperatures were calculated from the determined equation-of-state parameters based on Flory solution theory modified by Hamada ed al. Results show that interaction parameters of the PEO-aPMMA blend are negative and can be comparable with values obtained from neutron-scattering measurements by Ito et al. (Macromolecules, 1987, 20, 2213). Also, interaction parameters and excess volumes of PEO-PVAc blends are negative and increase with enhancing the content of PEO and the temperature. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
A poly(4-vinyl)pyridine (PVP)/Pd film electrode was constructed for the electrocatalytic detection of hydrazine. The preparation of the PVP/GC electrode was performed by electropolymerization of the monomer 4-vinylpyridine onto the surface of a glassy carbon electrode. Subsequently, palladium is electrodeposited onto the polymer modified electrode surface. The ion-exchange function of PVP polymer is helpful to this process in view of the tetrachlorapalladate anion. Compared with the Pd/GC electrode, the modified electrode displays a better mechanical stability in a flowing stream. The PVP/Pd film electrode exhibits higher sensitivity when detecting hydrazine with a detection limit of 0.026 ng (S/N=3).
Resumo:
Chromatography-amperometric detection of nitrite with a polypyrrole modified glassy carbon electrode doped with tungstodiphosphate anion (Dawson-type P2W18O626-/PPy/GC electrode) based on its electrocatalytic reduction of nitrite is described. The cyclic and hydrodynamic voltammetry of nitrite at the P2W18O626-/PPy/GC electrode was studied. The factors affecting the detection of nitrite and the analytical performance of the modified electrode in flowing stream were investigated. The results show that the modified electrode has a good sensitivity (the limit of detection is 1 mu mol dm(-3)) and a satisfactory reproducibility (RSD = 3.78%, N = 21). The modified electrode was used in the chromatographic detection of nitrite spiked in the liquid from a tin of mushrooms and the mineralized spring water. It was found that the modified electrode exhibited good selectivity for nitrite.
Resumo:
The miscibility of blends of cellulose diacetate (CDA) and poly(vinyl pyrrolidone) (PVP) was extensively studied by means of differential thermal analysis and dynamic mechanical thermal analysis, tensile test, measuring viscosity of diluted and concentrated solutions of blends in acetone-ethanol mixture and morphological observations. A single glass transition temperature is observed, which is intermediate between the glass transition temperatures associated with each component and depends on composition. A synergism in mechanical properties of blends was found. The absolute viscosity and the intrinsic viscosity of solutions of blends are much higher than the weight average values of solutions of CDA and PVP. Optically clear and thermodynamically stable films were formed in the composition range of CDA/PVP = 100/0 to 50/50w/w. Fourier transform infrared was used to investigate the nature of CDA-PVP interaction. Hydrogen bonds were formed between hydroxyl groups of CDA and carbonyl groups of PVP. Heats of solutions of CDA/PVP blends and their mechanical mixtures were measured by using a calorimeter. Mixing enthalpy obtained with Hess's law approach was used to quantify interaction parameters of this blending system. It was found that mixing enthalpies and interaction parameters were negative and composition dependent. (C) 1997 Elsevier Science Ltd.
Resumo:
The electrochemical preparation of highly dispersed Au microparticles on the surfaces of glassy carbon (GC) electrodes and their electrocatalytic activities for the oxidation of formaldehyde were studied. It was found that the reduction of Au3+ to Au is controlled by diffusion and the formation mechanism of Au microparticles on the GC surfaces corresponds to an instantaneous nucleation and diffusion-controlled three dimensional growth process. The particle size is about 80-90 nm in diameter after the electrochemical ageing treatment. These highly dispersed Au microparticles have high surface areas and exhibit better electrocatalytic activity than that of bulk-form Au toward the electrochemical oxidation of formaldehyde in alkaline media.
Resumo:
Ex situ and in situ STM characterization of the electrode materials, including HOPG, GC, Au, Pt and other electrodes, is briefly surveyed and critically evaluated. The relationship between the electrode activity and surface microtopography is discussed.
Resumo:
A cryo-hydrogel membrane (CHM) immobilized at a glassy carbon (GC) electrode is reported for the direct electron transfer of redox proteins. The most attractive characteristics of this CHM were its hydrophilic micro-environment for incorporated proteins to retain their activities, its high ability for protection against interference of denatured and adsorbed proteins at the electrode, its potential applications for various proteins or enzymes, as well as its high mechanical strength and thermal stability. A clear well developed and stable redox wave was obtained for commercially available horse heart myoglobin without further purification, giving a peak to peak separation Delta E(p) = 93 mV at 5 mV s(-1) and the formal electrode potential E(0)' = -0.158 V (vs. Ag/AgCl). The formal heterogeneous electron transfer rate constant was calculated as k(0)' = 5.7 X 10(-4) cm s(-1) at pH 6.5, showing rapid electron transfer was achieved. The pH controlled conformational equilibria, acid state --> natural state --> basic I state --> basic II state, of myoglobin at the CHM GC electrode in the pH range 0-13.8 were also observed and are discussed in detail.
Resumo:
Quantitative data on the crystallization kinetics of polymorphic polymers can be derived from the investigation of gross spherulitic morphology formed in isothermal conditions. Depending on distance between centers, and the time lag between their formation and relative growth rates, various types of boundary lines can be generated by the impinging of two spherical bodies whose radii increase linearly with time, In polymorphic polymers, different types of spherulites often develop simultaneously at different rates from sporadic or predetermined nuclei. In same cases, the so-called growth transformation, in which a nucleus of the fast growing specie is formed at the tip of an advancing lamella of the slower crystal form, provides an alternative mode of nucleation, It is shown that if only one event of growth transformation takes place at the front of a slow growing body, the fast growing spherulite swallows the parent one and the resultant shape of interspherulitic boundary is described by two symmetrical logarithmic spirals whose parameters can be extracted from micrographs taken at the end of crystallization. These concepts are applied to determine the radial growth rate of gamma form spherulites of polypivalolactone in a wide range of temperatures through analysis of the alpha/gamma interspherulitic profiles formed in isothermal conditions and direct measurement of the growth rate of the alpha counterparts at the same temperature.
Resumo:
An assay procedure utilizing pulsed amperometric detection at a platinum-particles modified electrode has been developed for the determination of cysteine and glutathione in blood samples following preliminary separation by reversed-phase liquid chromatography. A chemically modified electrode (CME) constructed by unique electroreduction from a platinum-salt solution to produce dispersed Pt particles on a glassy carbon surface was demonstrated to catalyze the electo-oxidation of sulfhydryl-containing compounds: DL-cysteine (CYS), reduced glutathione (GSH). When used as the sensing electrode in flow-system pulsed-amperometric detection (PAD), electrode fouling could be avoided using a waveform in which the cathodic reactivation process occurred at a potential of - 1.0 V vs. Ag/AgCl to achieve a cathodic desorption of atomic sulfur. A superior detection limit for these free thiols was obtained at a Pt particle-based GC electrode compared with other methods; this novel dispersed Pt particles CME exhibited high electrocatalytic stability and activity when it was employed as an electrochemical detector in FIA and HPLC for the determination of those organo-sulfur compounds.
Resumo:
Reduction of hydrogen peroxide at a glassy carbon (GC) electrode modified with sigma-bonded pyrrole iron(III) octaethylporphyrin complex, (OEP)Fe(Pyr), was studied by cyclic voltammetry and a rotating disk electrode. In 0.1N NaOH solution, it is shown that such an (OEP)Fe(Pyr)/GC electrode has a significant catalytic activity towards hydrogen peroxide reduction (E(D) = -0.80 V, k = 0.066 cm s(-1)); however, the electrode stability is low. The deactivation is observed when the reaction charge (Q) is passing through the (OEP)Fe(Pyr)/GC disk electrode. A linear rotation scan method is applied to study the kinetic process by determining the disk electrochemical response (i(D)) to rotation rate (omega) at a definite disk potential (E(D)). Considering that the number of adsorbed electroreduced catalyst molecules (Red) varies according to the disk potential, a factor theta(= Gamma(Red)/(Gamma(Red) + Gamma(Ox))) is introduced to describe the electrode surface area fraction for electroreduced species. The obtained Koutecky-Levich equation is applicable whatever the potential is.
Resumo:
A modified method for dispersing platinum particles on a glassy carbon (GC) electrode was investigated. The ultramicro Pt particle-modified electrode obtained exhibited high catalytic stability and activity towards the oxidation of some halide ions (Br-, I-) and inorganic sulfur species (S2O32-, SO32- and SCN-). These anions were separated and detected by using ion chromatography and electrochemical detection via this novel dispersed Pt particles-GC working electrode. The detection limits were 20 ng/ml for Br-, 1.0 ng/ml for I-, 10 ng/ml for SO32- and 4.0 ng/ml for SCN-. This method was employed for the analysis of industrial and environmental waste waters.
Resumo:
The electro-oxidation of PtCl42- was studied on a glassy carbon (GC) electrode. A Pt(IV) complex was formed on the electrode surface through coordination to the oxygen atom of an oxide functional group on the electrode, which results in its deactivation. The ferri/ferrocyanide redox couple was used as a probe to examine the activity of the GC electrode. X-ray photoelectron spectroscopy was employed to characterize the platinum on the electrode surface, and showed that the oxidation state of the Pt element changes depending on the electrochemical treatment of GC electrode. The platinum complex on the surface of the GC electrode can be transformed to Pt-0 by cycling the electrode between -0.25 and +1.65 V/SCE in 0.1 M H2SO4 solution. The above procedure can be used to disperse platinum ultramicroparticles on the surface of a GC electrode.