882 resultados para Fusão de bósons


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, was studied the formation of a composite of the refractory metal niobium with copper, through the process of high-energy milling and liquid phase sintering. The HEM can be used to synthesize composite powders with high homogeneity and fine size particle distribution. It may also produce the solid solubility in immiscible systems such as Nb-Cu, or extend the solubility of systems with limited solubility. Therefore, in the immiscible system Cu-Nb, the high-energy milling was successfully used to obtain the composite powder particles. Initially, the formation of composite particles during the HEM and the effect of preparation technique on the microstructure of the material was evaluated. Four loads of Nb and Cu powders containing 20%wt Cu were synthesized by MAE in a planetary type ball mill under different periods of grinding. The influence of grinding time on the metal particles is evaluated during the process by the withdrawal of samples at intermediate times of milling. After compaction under different forces, the samples were sintered in a vacuum furnace. The liquid phase sintering of these samples prepared by HEM produced a homogeneous and fine grained. The composite particles forming the sintered samples are the addition of a hard phase (Nb) with a high melting point, and a ductile phase (Cu) with low melting point and high thermal and electrical conductivities. Based on these properties, the Nb-Cu system is a potential material for many applications, such as electrical contacts, welding electrodes, coils for generating high magnetic fields, heat sinks and microwave absorbers, which are coupled to electronic devices. The characterization techniques used in this study, were laser granulometry, used to evaluate the homogeneity and particle size, and the X-ray diffraction, in the phase identification and to analyze the crystalline structure of the powders during milling. The morphology and dispersion of the phases in the composite powder particles, as well the microstructures of the sintered samples, were observed by scanning electron microscopy (SEM). Subsequently, the sintered samples are evaluated for density and densification. And finally, they were characterized by techniques of measuring the electrical conductivity and microhardness, whose properties are analyzed as a function of the parameters for obtaining the composite

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pretende-se, no presente artigo, demonstrar que, nos livros para crianças, a relação dialogal e a fusão intersemiótica entre as linguagens verbal e icónica potenciam a instauração de uma atmosfera poética imprescindível na formação estético-literária da criança pré-leitora, que, no processo hermenêutico de apropriação e construção de sentidos, sozinha ou pela mão do adulto-mediador, se assume como um ser cognoscente e cocriador do universo textual, encetando um percurso enunciativo de intensa cooperação interpretativa. Pretende-se igualmente problematizar o lugar dos livros no jardim de infância e o seu contributo para o desenvolvimento cognitivo, social e emocional da criança em idade pré-escolar, atribuindo pedagogicamente ao adulto-mediador um papel determinante nesse processo de construção do ser em crescimento nomeadamente através do recurso ao livro de qualidade estética e literária.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado apresentada ao Instituto Superior de Psicologia Aplicada para obtenção de grau de Mestre na especialidade de Psicologia Clínica.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Química, Programa de Pós-Graduação em Tecnologia Química e Biológica, 2016.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal substrates were coated by thermal spraying plasma torch, they were positioned at a distance of 4 and 5 cm from the nozzle exit of the plasma jet. The starting materials were used for deposition of tantalum oxide powder and aluminium. These two materials were mixed and ground into high-energy mill, then immersed in the torch for the production of alumina coating infused with particles of tantalum with nano and micrometric size. The spraying equipment used is a plasma torch arc not transferred, which operating in the range of 250 A and 80 V, was able to produce enough heat to ignite aluminothermic between Ta2O5 and aluminum. Upon reaching the plasma jet, the mixing powders react with the heat of the blaze, which provides sufficient energy for melting aluminum particles. This energy is transferred through mechanisms of self-propagating to the oxide, beginning a reduction reaction, which then hits on the surface of the substrate and forms a coating on which a composite is formed by a junction metal - ceramic (Ta +Al2O3). The phases and quantification of each were obtained respectively by X-ray diffraction and the Rietveld method. Morphology by scanning electron microscopy and chemical analysis by energy dispersive spectroscopy EDS. It was also performed measurements of the substrate roughness, Vickers microhardness measurements in sprays and determination of the electron temperature of the plasma jet by optical emission spectroscopy EEO. The results confirmed the expectation generated around the end product of spraying the mixture Ta2O5 + Al, both in the formation of nano-sized particles and in their final form. The electron excitation temperature was consistent with the purpose of work, in addition, the thermodynamic temperature was efficient for the reduction process of Ta2O5. The electron excitation temperature showed values of 3000, 4500 and 8000 K for flows10, 20 and 30 l / min respectively, these values were taken at the nozzle exit of the plasma jet. The thermodynamic temperature around 1200 ° C, was effective in the reduction process of Ta2O5

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The metalceramic crowns are usually used in dentistry because they provide a resistant structure due to its metallic base and its aesthetics from the porcelain that recovers this structure. To manufacture these crowns, a series of stages should be accomplished in the prosthetic laboratories, and many variables can influence its success. Changes in these variables cause alterations in the metallic alloy and in the porcelain, so, as consequence, in the adhesion between them. The composition of the metal alloy can be modified by recasting alloys, a common practice in some prosthetic laboratories. The aim of this paper is to make a systematic study investigating metalceramic crowns as well as analyzing the effect of recasting Ni-Cr alloys. Another variable which can influence the mechanism of metalceramic union is the temperature used in firing porcelain procedure. Each porcelain has to be fired in a fixed temperature which is determined by the manufacturer and its change can cause serious damages. This research simulate situations that may occur on laboratory procedures and observe their consequences in the quality of the metalceramic union. A scanning eletron microscopy and an optic microscopy were accomplish to analyse the metal-ceramic interface. No differences have been found when remelting alloys were used. The microhardness were similar in Ni-Cr alloys casted once, twice and three times. A wettability test was accomplished using a software developed at the Laboratório de Processamento de Materiais por Plasma, on the Universidade Federal do Rio Grande do Norte. No differences were found in the contact angle between the solid surface (metallic substratum) and the tangencial plane to the liquid surface (opaque). To analyse if the temperature of porcelain firing procedure could influence the contact area between metal and porcelain, a variation in its final temperature was achieve from 980° to 955°C. Once more, no differences have been found

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The growing concern with the solid residues management, observed in the last decade, due to its huge amount and impact, has motivated the search for recycling processes, where these residues can be reprocessed to generate new products, enlarging the cycle of materials and energy which are present. Among the polymeric residues, there is poly (ethylene terephthalate) (PET). PET is used in food packaging, preferably in the bottling of carbonated beverages. The reintegration of post-consumer PET in half can be considered a productive action mitigation of environmental impacts caused by these wastes and it is done through the preparation of several different products at the origin, i.e. food packaging, with recycling rates increasing to each year. This work focused on the development and characterization mechanical, thermal, thermo-mechanical, dynamic mechanical thermal and morphology of the pure recycled PET and recycled PET composites with glass flakes in the weight fraction of 5%, 10% and 20% processed in a single screw extruder, using the following analytical techniques: thermogravimetry (TG), differential scanning calorimetry (DSC), tensile, Izod impact, Rockwell hardness, Vicat softening temperature, melt flow rate, burn rate, dynamic mechanical thermal analysis (DMTA) and scanning electron microscopy (SEM). The results of thermal analysis and mechanical properties leading to a positive evaluation, because in the thermograms the addition of glass flakes showed increasing behavior in the initial temperatures of thermal decomposition and melting crystalline, Furthermore was observed growing behavior in the mechanical performance of polymer composites, whose morphological structure was observed by SEM, verifying a good distribution of glass flakes, showing difference orientation in the center and in the surface layer of test body of composites with 10 and 20% of glass flakes. The results of DMTA Tg values of the composites obtained from the peak of tan ä showed little reductions due to poor interfacial adhesion between PET and recycled glass flakes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The research and development of nanostructured materials have been growing significantly in the last years. These materials have properties that were significantly modified as compared to conventional materials due to the extremely small dimensions of the crystallites. The tantalum carbide (TaC) is an extremely hard material that has high hardness, high melting point, high chemical stability, good resistance to chemical attack and thermal shock and excellent resistance to oxidation and corrosion. The Compounds of Tantalum impregnated with copper also have excellent dielectric and magnetic properties. Therefore, this study aimed to obtain TaC and mixed tantalum oxide and nanostructured copper from the precursor of tris (oxalate) hydrate ammonium oxitantalato, through gas-solid reaction and solid-solid respectively at low temperature (1000 ° C) and short reaction time. The materials obtained were characterized by X-ray diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), Spectroscopy X-Ray Fluorescence (XRF), infrared spectroscopy (IR), thermogravimetric (TG), thermal analysis (DTA) and BET. Through the XRD analyses and the Reitiveld refinement of the TaC with S = 1.1584, we observed the formation of pure tantalum carbide and cubic structure with average crystallite size on the order of 12.5 nanometers. From the synthesis made of mixed oxide of tantalum and copper were formed two distinct phases: CuTa10O26 and Ta2O5, although the latter has been formed in lesser amounts

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Processamento de Linguagem Natural e Indústrias da Língua, Faculdade de Ciências Humanas e Sociais, Universidade do Algarve, 2014

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese de Doutoramento em Ciências Sociais na Especialidade de Administração da Saúde

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de dout. em Ecologia, Faculdade de Ciências do Mar e do Ambiente, Univ. do Algarve, 2005

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mastrado, Gestão de Unidades de Saúde, Faculdade de Economia, Universidade do Algarve, 2016

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O processamento térmico de materiais cerâmicos via energia de microondas, no estágio atual, vem ganhando cada dia mais importância, tendo em vista suas inúmeras aplicações, como por exemplo: aplicação de microondas na área de processamento mineral (aquecimento de minérios antes da moagem, secagem, redução carbotérmica de óxidos minerais, lixiviação, fusão, pré-tratamento de minérios e concentrados de ouro refratário, regeneração de carvão, etc. de acordo com Kigman & Rowson, 1998). Em virtude de uma série de vantagens em potencial, frente aos métodos convencionais de aquecimento, como redução no tempo de processamento; economia de energia; diminuição do diâmetro médio das partículas e melhoramento nas propriedades tecnológicas em geral, esta tecnologia vem se destacando. Neste contexto, o objetivo geral deste trabalho, é desenvolver uma pesquisa visando identificar e caracterizar novas opções de matérias-primas cerâmicas como argilas, feldspatos e caulins que sejam eficazes para definir a formulação de uma ou mais massas para produção de componentes de cerâmica estrutural com propriedades físicas, mecânicas e estéticas adequadas após passarem por sinterização convencional e por energia de microondas destacando as vantagens desta última. Além dos requisitos técnicos e de processo, as formulações apresentadas deverão atender às expectativas de preço e de logística de fornecimento. No estudo foram conformados corpos-de-prova por extrusão e prensagem, sinterizados em fornos microondas e convencional, sob ciclos de queima mais rápidos que os atualmente praticados. As matérias-primas foram caracterizadas e analisadas, utilizando as técnicas de fluorescência por raios X (FRX), difração por raios X (DRX), análise térmica diferencial (DTA), análise térmica gravimétrica (DTG), análise granulométrica (AG), microscopia eletrônica de varredura (MEV), absorção d agua (AA), massa especifica aparente (MEA), porosidade aparente (PA), retração linear (RL) e tensão de ruptura e flexão (TRF). Os resultados obtidos indicaram que as propriedades tecnológicas de Absorção de água (AA) e Tensão de Ruptura e flexão (TRF), proposto no trabalho foram adquiridos com sucesso e estão bem além do limite exigido pelas especificações das normas da ABNT NBR 15.270/05 e 15.310/09

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The refractory metal carbides have proven important in the development of engineering materials due to their properties such as high hardness, high melting point, high thermal conductivity and high chemical stability. The niobium carbide presents these characteristics. The compounds of niobium impregnated with copper also have excellent dielectric and magnetic properties, and furthermore, the Cu doping increases the catalytic activity in the oxidation processes of hydrogen. This study aimed to the synthesis of nanostructured materials CuNbC and niobium and copper oxide from precursor tris(oxalate) oxiniobate ammonium hydrate through gas-solid and solid-solid reaction, respectively. Both reactions were carried out at low temperature (1000°C) and short reaction time (2 hours). The niobium carbide was produced with 5 % and 11% of copper, and the niobium oxide with 5% of copper. The materials were characterized by X-Ray Diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF), infrared spectroscopy (IR), thermogravimetric (TG) and differential thermal analysis (DTA , BET and particle size Laser. From the XRD analysis and Rietveld refinement of CuNbC with S = 1.23, we observed the formation of niobium carbide and metallic copper with cubic structure. For the synthesis of mixed oxide made of niobium and copper, the formation of two distinct phases was observed: CuNb2O6 and Nb2O5, although the latter was present in small amounts

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertação de Mestrado, Oncobiologia - Mecanismos Moleculares do Cancro, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, 2016