1000 resultados para First Integrals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomic and electronic properties of N-N split interstitial in GaN nanowires have been investigated using first principles calculations. The formation energy calculations show that the N-N interstitial favors substituting an N atom at the surface of the nanowires. The interstitial induces localized states in the band gap of GaN nanowires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the electronic structure and magnetic coupling properties of Gd doped AlN have been investigated using first-principles method. We found that in the AlN:Gd system, due to the s-f coupling allowed by the symmetry, the exchange splitting of the conduction band is much larger than that of the valence band, which makes the electron-mediated ferromagnetism possible in this material. This property is also confirmed by the energy differences between anti-ferromagnetic and ferromagnetic phase for Al14Gd2N16 with different concentrations of electrons (holes), as well as by the calculated exchange constants. The result indicates that Gd-doped AlN is a promising candidate for the applications in future spintronic devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For large size- and chemical-mismatched isovalent semiconductor alloys, such as N and Bi substitution on As sites in GaAs, isovalent defect levels or defect bands are introduced. The evolution of the defect states as a function of the alloy concentration is usually described by the popular phenomenological band anticrossing (BAC) model. Using first-principles band-structure calculations we show that at the impurity limit the N-(Bi)-induced impurity level is above (below) the conduction- (valence-) band edge of GaAs. These trends reverse at high concentration, i.e., the conduction-band edge of GaAs1-xNx becomes an N-derived state and the valence-band edge of GaAs1-xBix becomes a Bi-derived state, as expected from their band characters. We show that this band crossing phenomenon cannot be described by the popular BAC model but can be naturally explained by a simple band broadening picture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavefunctions of electronic Wannier-Stark states in a superlattice are calculated with a finite Kronig-Penney model. Overlap integrals between electron and heavy-hole wavefunctions centred in the same well layer, and in first- and second-neighbour wells are calculated as functions of the applied field. The results show good agreement with experimental results on photoluminescence. The problem is also treated by a one-band approximation method, which gives a closed expression for the wavefunction of the Wannier-Stark states; this is compared with the results of accurate calculations with the Kronig-Penney model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of EST-10, a member of synthetic microporous titanosilicates, was recently determined by an ingenious combination of experimental and simulational techniques. However, the locations of the alkali atoms in the framework remain elusive and its electronic structure is totally unknown. Based on first-principles local density calculations, the possible locations of the alkali atoms are identified and its electronic structure and bonding fully elucidated. ETS-10 is a semiconductor with a direct band gap of 2.33 eV. The Na atoms are likely to locate inside the seven-member ring pore adjacent to the one-dimensional Ti-O-Ti-O- chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure and magnetism of eskolaite are studied by using first-principles calculations where the on-site Coulomb interaction and the exchange interaction are taken into account and the LSDA+U method is used.The calculated energies of magnetic configurations are very well fitted by the Heisenberg Hamiltonian with interactions in five neighbour shells; interaction with two nearest neighbours is found to be dominant. The Neel temperature is calculated in the spin-3/2 pair-cluster approximation. It is found that the measurements are in good agreement with for the values of U and J that are close to those obtained within the constrained occupation method.The band gap is of the Mott-Hubbard type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Test strip detectors of 125 mu m, 500 mu m, and 1 mm pitches with about 1 cm(2) areas have been made on medium-resistivity silicon wafers (1.3 and 2.7 k Ohm cm). Detectors of 500 mu m pitch have been tested for charge collection and position precision before and after neutron irradiation (up to 2 x 10(14) n/cm(2)) using 820 and 1030 nm laser lights with different beam-spot sizes. It has been found that for a bias of 250 V a strip detector made of 1.3 k Ohm cm (300 mu m thick) can be fully depleted before and after an irradiation of 2 x 10(14) n/cm(2). For a 500 mu m pitch strip detector made of 2.7 k Ohm cm tested with an 1030 nm laser light with 200 mu m spot size, the position reconstruction error is about 14 mu m before irradiation, and 17 mu m after about 1.7 x 10(13) n/cm(2) irradiation. We demonstrated in this work that medium resistivity silicon strip detectors can work just as well as the traditional high-resistivity ones, but with higher radiation tolerance. We also tested charge sharing and position reconstruction using a 1030 nm wavelength (300 mu m absorption length in Si at RT) laser, which provides a simulation of MIP particles in high-physics experiments in terms of charge collection and position reconstruction, (C) 1999 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a first-principles-based strategy to predict the macroscopic toughness of a gamma-Ni(Al)/alpha-Al2O3 interface. Density functional theory calculations are used to ascertain energy changes upon displacing the two materials adjacent to the interface, with relaxation conducted over all atoms located within adjoining rows. Traction/displacernent curves are obtained from derivatives of the energy. Calculations are performed in mode I (opening), mode II (shear) and at a phase angle of 45 degrees. The shear calculations are conducted for displacements along < 110 > and < 112 > of the Ni lattice. A generalized interface potential function is used to characterize the results. Initial fitting to both the shear and normal stress results is required to calibrate the unknowns. Thereafter, consistency is established by using the potential to predict other traction quantities. The potential is incorporated as a traction/displacement function within a cohesive zone model and used to predict the steady-state toughness of the interface. For this purpose, the plasticity of the Ni alloy must be known, including the plasticity length scale. Measurements obtained for a gamma-Ni superalloy are used and the toughness predicted over the full range of mode mixity. Additional results for a range of alloys are used to demonstrate the influences of yield strength and length scale.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a first-principles-based strategy to predict the macroscopic toughness of a gamma-Ni(Al)/alpha-Al2O3 interface. Density functional theory calculations are used to ascertain energy changes upon displacing the two materials adjacent to the interface, with relaxation conducted over all atoms located within adjoining rows. Traction/displacernent curves are obtained from derivatives of the energy. Calculations are performed in mode I (opening), mode II (shear) and at a phase angle of 45 degrees. The shear calculations are conducted for displacements along < 110 > and < 112 > of the Ni lattice. A generalized interface potential function is used to characterize the results. Initial fitting to both the shear and normal stress results is required to calibrate the unknowns. Thereafter, consistency is established by using the potential to predict other traction quantities. The potential is incorporated as a traction/displacement function within a cohesive zone model and used to predict the steady-state toughness of the interface. For this purpose, the plasticity of the Ni alloy must be known, including the plasticity length scale. Measurements obtained for a gamma-Ni superalloy are used and the toughness predicted over the full range of mode mixity. Additional results for a range of alloys are used to demonstrate the influences of yield strength and length scale.