933 resultados para ENDOCRINE DISRUPTION


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Context: Pheochromocytomas and paragangliomas (PPGLs) are heritable neoplasms that can be classified into gene-expression subtypes corresponding to their underlying specific genetic drivers. Objective: This study aimed to develop a diagnostic and research tool (Pheo-type) capable of classifying PPGL tumors into gene-expression subtypes that could be used to guide and interpret genetic testing, determine surveillance programs, and aid in elucidation of PPGL biology. Design: A compendium of published microarray data representing 205 PPGL tumors was used for the selection of subtype-specific genes that were then translated to the Nanostring gene-expression platform. A support vector machine was trained on the microarray dataset and then tested on an independent Nanostring dataset representing 38 familial and sporadic cases of PPGL of known genotype (RET, NF1, TMEM127, MAX, HRAS, VHL, and SDHx). Different classifier models involving between three and six subtypes were compared for their discrimination potential. Results: A gene set of 46 genes and six endogenous controls was selected representing six known PPGL subtypes; RTK1–3 (RET, NF1, TMEM127, and HRAS), MAX-like, VHL, and SDHx. Of 38 test cases, 34 (90%) were correctly predicted to six subtypes based on the known genotype to gene-expression subtype association. Removal of the RTK2 subtype from training, characterized by an admixture of tumor and normal adrenal cortex, improved the classification accuracy (35/38). Consolidation of RTK and pseudohypoxic PPGL subtypes to four- and then three-class architectures improved the classification accuracy for clinical application. Conclusions: The Pheo-type gene-expression assay is a reliable method for predicting PPGL genotype using routine diagnostic tumor samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND Approximately 50% of patients with stage 3 Chronic Kidney Disease are 25-hydroxyvitamin D insufficient, and this prevalence increases with falling glomerular filtration rate. Vitamin D is now recognised as having pleiotropic roles beyond bone and mineral homeostasis, with the vitamin D receptor and metabolising machinery identified in multiple tissues. Worryingly, recent observational data has highlighted an association between hypovitaminosis D and increased cardiovascular mortality, possibly mediated via vitamin D effects on insulin resistance and inflammation. The main hypothesis of this study is that oral Vitamin D supplementation will ameliorate insulin resistance in patients with Chronic Kidney Disease stage 3 when compared to placebo. Secondary hypotheses will test whether this is associated with decreased inflammation and bone/adipocyte-endocrine dysregulation. METHODS/DESIGN This study is a single-centre, double-blinded, randomised, placebo-controlled trial. Inclusion criteria include; estimated glomerular filtration rate 30-59 ml/min/1.73 m(2); aged >or=18 on entry to study; and serum 25-hydroxyvitamin D levels <75 nmol/L. Patients will be randomised 1:1 to receive either oral cholecalciferol 2000IU/day or placebo for 6 months. The primary outcome will be an improvement in insulin sensitivity, measured by hyperinsulinaemic euglycaemic clamp. Secondary outcome measures will include serum parathyroid hormone, cytokines (Interleukin-1beta, Interleukin-6, Tumour Necrosis Factor alpha), adiponectin (total and High Molecular Weight), osteocalcin (carboxylated and under-carboxylated), peripheral blood mononuclear cell Nuclear Factor Kappa-B p65 binding activity, brachial artery reactivity, aortic pulse wave velocity and waveform analysis, and indirect calorimetry. All outcome measures will be performed at baseline and end of study. DISCUSSION To date, no randomised controlled trial has been performed in pre-dialysis CKD patients to study the correlation between vitamin D status with supplementation, insulin resistance and markers of adverse cardiovascular risk. We remain hopeful that cholecalciferol may be a safe intervention, with health benefits beyond those related to bone-mineral homeostasis. TRIAL REGISTRATION Australian and New Zealand Clinical Trials Registry ACTRN12609000246280.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Brain function is critically dependent on the ionic homeostasis in both the extra- and intracellular compartment. The regulation of brain extracellular ionic composition mainly relies on active transport at blood brain and at blood cerebrospinal fluid interfaces whereas intracellular ion regulation is based on plasmalemmal transporters of neurons and glia. In addition, the latter mechanisms can generate physiologically as well as pathophysiologically significant extracellular ion transients. In this work I have studied molecular mechanisms and development of ion regulation and how these factors alter neuronal excitability and affect synaptic and non-synaptic transmission with a particular emphasis on intracellular pH and chloride (Cl-) regulation. Why is the regulation of acid-base equivalents (H+ and HCO3-) and Cl- of such interest and importance? First of all, GABAA-receptors are permeable to both HCO3- and Cl-. In the adult mammalian central nervous system (CNS) fast postsynaptic inhibition relies on GABAA-receptor mediated transmission. Today, excitatory effects of GABAA-receptors, both in mature neurons and during the early development, have been recognized and the significance of the dual actions of GABA on neuronal communication has become an interesting field of research. The transmembrane gradients of Cl- and HCO3- determine the reversal potential of GABAA-receptor mediated postsynaptic potentials and hence, the function of pH and Cl- regulatory proteins have profound consequences on GABAergic signaling and neuronal excitability. Secondly, perturbations in pH can cause a variety of changes in cellular function, many of them resulting from the interaction of protons with ionizable side chains of proteins. pH-mediated alterations of protein conformation in e.g. ion channels, transporters, and enzymes can powerfully modulate neurotransmission. In the context of pH homeostasis, the enzyme carbonic anhydrase (CA) needs to be taken into account in parallel with ion transporters: for CO2/HCO3- buffering to act in a fast manner, CO2 (de)hydration must be catalyzed by this enzyme. The acid-base equivalents that serve as substrates in the CO2 dehydration-hydration reaction are also engaged in many carrier and channel mediated ion movements. In such processes, CA activity is in key position to modulate transmembrane solute fluxes and their consequences. The bicarbonate transporters (BTs; SLC4) and the electroneutral cation-chloride cotransporters (CCCs; SLC12) belong the to large gene family of solute carriers (SLCs). In my work I have studied the physiological roles of the K+-Cl- cotransporter KCC2 (Slc12a5) and the Na+-driven Cl--HCO3- exchanger NCBE (Slc4a10) and the roles of these two ion transporters in the modualtion of neuronal communication and excitability in the rodent hippocampus. I have also examined the cellular localization and molecular basis of intracellular CA that has been shown to be essential for the generation of prolonged GABAergic excitation in the mature hippocampus. The results in my Thesis provide direct evidence for the view that the postnatal up-regulation of KCC2 accounts for the developmental shift from depolarizing to hyperpolarizing postsynaptic EGABA-A responses in rat hippocampal pyramidal neurons. The results also indicate that after KCC2 expression the developmental onset of excitatory GABAergic transmission upon intense GABAA-receptor stimulation depend on the expression of intrapyramidal CA, identified as the CA isoform VII. Studies on mice with targeted Slc4a10 gene disruption revealed an important role for NCBE in neuronal pH regulation and in pH-dependent modulation of neuronal excitability. Furthermore, this ion transporter is involved in the basolateral Na+ and HCO3- uptake in choroid plexus epithelial cells, and is thus likely to contribute to cerebrospinal fluid production.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glomerular epithelial cells and their intercellular junctions, termed slit diaphragms, are essential components of the filtration barrier in the kidney glomerulus. Nephrin is a transmembrane adhesion protein of the slit diaphragm and a signalling molecule regulating podocyte physiology. In congenital nephrotic syndrome of the Finnish type, mutation of nephrin leads to disruption of the permeability barrier and leakage of plasma proteins into the urine. This doctoral thesis hypothesises that novel nephrin-associated molecules are involved in the function of the filtration barrier in health and disease. Bioinformatics tools were utilized to identify novel nephrin-like molecules in genomic databases, and their distribution in the kidney and other tissues was investigated. Filtrin, a novel nephrin homologue, is expressed in the glomerular podocytes and, according to immunoelectron microscopy, localizes at the slit diaphragm. Interestingly, the nephrin and filtrin genes, NPHS1 and KIRREL2, locate in a head-to-head orientation on chromosome 19q13.12. Another nephrin-like molecule, Nphs1as was cloned in mouse, however, no expression was detected in the kidney but instead in the brain and lymphoid tissue. Notably, Nphs1as is transcribed from the nephrin locus in an antisense orientation. The glomerular mRNA and protein levels of filtrin were measured in kidney biopsies of patients with proteinuric diseases, and marked reduction of filtrin mRNA levels was detected in the proteinuric samples as compared to controls. In addition, altered distribution of filtrin in injured glomeruli was observed, with the most prominent decrease of the expression in focal segmental glomerulosclerosis. The role of the slit diaphragm-associated genes for the development of diabetic nephropathy was investigated by analysing single nucleotide polymorphisms. The genes encoding filtrin, densin-180, NEPH1, podocin, and alpha-actinin-4 were analysed, and polymorphisms at the alpha-actinin-4 gene were associated with diabetic nephropathy in a gender-dependent manner. Filtrin is a novel podocyte-expressed protein with localization at the slit diaphragm, and the downregulation of filtrin seems to be characteristic for human proteinuric diseases. In the context of the crucial role of nephrin for the glomerular filter, filtrin appears to be a potential candidate molecule for proteinuria. Although not expressed in the kidney, the nephrin antisense Nphs1as may regulate the expression of nephrin in extrarenal tissues. The genetic association analysis suggested that the alpha-actinin-4 gene, encoding an actin-filament cross-linking protein of the podocytes, may contribute to susceptibility for diabetic nephropathy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Foot ulceration is the main precursor to lower limb amputation in patients with type 2 diabetes worldwide. Biomechanical factors have been implicated in the development of foot ulceration; however the association of these factors to ulcer healing remains less clear. It may be hypothesised that abnormalities in temporal spatial parameters (stride to stride measurements), kinematics (joint movements), kinetics (forces on the lower limb) and plantar pressures (pressure placed on the foot during walking) contribute to foot ulcer healing. The primary aim of this study is to establish the biomechanical characteristics (temporal spatial parameters, kinematics, kinetics and plantar pressures) of patients with plantar neuropathic foot ulcers compared to controls without a history of foot ulcers. The secondary aim is to assess the same biomechanical characteristics in patients with foot ulcers and controls over-time to assess whether these characteristics remain the same or change throughout ulcer healing. Methods/Design The design is a case–control study nested in a six-month longitudinal study. Cases will be participants with active plantar neuropathic foot ulcers (DFU group). Controls will consist of patients with type 2 diabetes (DMC group) and healthy participants (HC group) with no history of foot ulceration. Standardised gait and plantar pressure protocols will be used to collect biomechanical data at baseline, three and six months. Descriptive variables and primary and secondary outcome variables will be compared between the three groups at baseline and follow-up. Discussion It is anticipated that the findings from this longitudinal study will provide important information regarding the biomechanical characteristic of type 2 diabetes patients with neuropathic foot ulcers. We hypothesise that people with foot ulcers will demonstrate a significantly compromised gait pattern (reduced temporal spatial parameters, kinematics and kinetics) at base line and then throughout the follow-up period compared to controls. The study may provide evidence for the design of gait-retraining, neuro-muscular conditioning and other approaches to off-load the limbs of those with foot ulcers in order to reduce the mechanical loading on the foot during gait and promote ulcer healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The striated muscle sarcomere is a force generating and transducing unit as well as an important sensor of extracellular cues and a coordinator of cellular signals. The borders of individual sarcomeres are formed by the Z-disks. The Z-disk component myotilin interacts with Z-disk core structural proteins and with regulators of signaling cascades. Missense mutations in the gene encoding myotilin cause dominantly inherited muscle disorders, myotilinopathies, by an unknown mechanism. In this thesis the functions of myotilin were further characterized to clarify the molecular biological basis and the pathogenetic mechanisms of inherited muscle disorders, mainly caused by mutated myotilin. Myotilin has an important function in the assembly and maintenance of the Z-disks probably through its actin-organizing properties. Our results show that the Ig-domains of myotilin are needed for both binding and bundling actin and define the Ig domains as actin-binding modules. The disease-causing mutations appear not to change the interplay between actin and myotilin. Interactions between Z-disk proteins regulate muscle functions and disruption of these interactions results in muscle disorders. Mutations in Z-disk components myotilin, ZASP/Cypher and FATZ-2 (calsarcin-1/myozenin-2) are associated with myopathies. We showed that proteins from the myotilin and FATZ families interact via a novel and unique type of class III PDZ binding motif with the PDZ domains of ZASP and other Enigma family members and that the interactions can be modulated by phosphorylation. The morphological findings typical of myotilinopathies include Z-disk alterations and aggregation of dense filamentous material. The causes and mechanisms of protein aggregation in myotilinopathy patients are unknown, but impaired degradation might explain in part the abnormal protein accumulation. We showed that myotilin is degraded by the calcium-dependent, non-lysosomal cysteine protease calpain and by the proteasome pathway, and that wild type and mutant myotilin differ in their sensitivity to degradation. These studies identify the first functional difference between mutated and wild type myotilin. Furthermore, if degradation of myotilin is disturbed, it accumulates in cells in a manner resembling that seen in myotilinopathy patients. Based on the results, we propose a model where mutant myotilin escapes proteolytic breakdown and forms protein aggregates, leading to disruption of myofibrils and muscular dystrophy. In conclusion, the main results of this study demonstrate that myotilin is a Z-disk structural protein interacting with several Z-disk components. The turnover of myotilin is regulated by calpain and the ubiquitin proteasome system and mutations in myotilin seem to affect the degradation of myotilin, leading to protein accumulations in cells. These findings are important for understanding myotilin-linked muscle diseases and designing treatments for these disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stone Baby: An Exploration of Affect and Trauma in Visual Art was held at the Block, QUT Creative Industries Precinct on August 27-28, 2014. At the conclusion of my Masters project, this exhibition was a showcase of the outcomes of my material and digital explorations in the form of installation, sculpture and film. My primary motivation can be described as a relational and ethical attempt to find a balance between the erotic and the aggressive. This is experienced in the self as feelings of attraction and repulsion in response to the new and unknown "other". Consequently creative practice is necessarily a complex affair that is experienced as a completely immersive and self-contained psychological space. It is within this space that both physical sensation and raw emotion are able to tangibly and conceptually interact with psychoanalytic theory, and concrete materials video and sound.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The RecA-like proteins constitute a group of DNA strand transfer proteins ubiquitous in eubacteria, eukarya, and archaea. However, the functional relationship among RecA proteins is poorly understood. For instance, Mycobacterium tuberculosis RecA is synthesized as a large precursor, which undergoes an unusual protein-splicing reaction to generate an active form. Whereas the precursor was inactive, the active form promoted DNA strand transfer less efficiently compared to EcRecA. Furthermore, gene disruption studies have indicated that the frequencies of allele exchange are relatively lower in Mycobacterium tuberculosis compared to Mycobacterium smegmatis. The mechanistic basis and the factors that contribute to differences in allele exchange remain to be understood. Here, we show that the extent of DNA strand transfer promoted by the M. smegmatis RecA in vitro differs significantly from that of M. tuberculosis RecA. Importantly, M. smegmatis RecA by itself was unable to promote strand transfer, but cognate or noncognate SSBs rendered it efficient even when added prior to RecA. In the presence of SSB, MsRecA or MtRecA catalyzed strand transfer between ssDNA and varying lengths of linear duplex DNA with distinctly different pH profiles. The factors that were able to suppress the formation of DNA networks greatly stimulated strand transfer reactions promoted by MsRecA or MtRecA. Although the rate and pH profiles of dATP hydrolysis catalyzed by MtRecA and MsRecA were similar, only MsRecA was able to couple dATP hydrolysis to DNA strand transfer. Together, these results provide insights into the functional diversity in DNA strand transfer promoted by RecA proteins of pathogenic and nonpathogenic species of mycobacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hematogenous metastases are rarely present at diagnosis of ovarian clear cell carcinoma (OCC). Instead dissemination of these tumors is characteristically via direct extension of the primary tumor into nearby organs and the spread of exfoliated tumor cells throughout the peritoneum, initially via the peritoneal fluid, and later via ascites that accumulates as a result of disruption of the lymphatic system. The molecular mechanisms orchestrating these processes are uncertain. In particular, the signaling pathways used by malignant cells to survive the stresses of anchorage-free growth in peritoneal fluid and ascites, and to colonize remote sites, are poorly defined. We demonstrate that the transmembrane glycoprotein CUB-domain-containing protein 1 (CDCP1) has important and inhibitable roles in these processes. In vitro assays indicate that CDCP1 mediates formation and survival of OCC spheroids, as well as cell migration and chemoresistance. Disruption of CDCP1 via silencing and antibody-mediated inhibition markedly reduce the ability of TOV21G OCC cells to form intraperitoneal tumors and induce accumulation of ascites in mice. Mechanistically our data suggest that CDCP1 effects are mediated via a novel mechanism of protein kinase B (Akt) activation. Immunohistochemical analysis also suggested that CDCP1 is functionally important in OCC, with its expression elevated in 90% of 198 OCC tumors and increased CDCP1 expression correlating with poor patient disease-free and overall survival. This analysis also showed that CDCP1 is largely restricted to the surface of malignant cells where it is accessible to therapeutic antibodies. Importantly, antibody-mediated blockade of CDCP1 in vivo significantly increased the anti-tumor efficacy of carboplatin, the chemotherapy most commonly used to treat OCC. In summary, our data indicate that CDCP1 is important in the progression of OCC and that targeting pathways mediated by this protein may be useful for the management of OCC, potentially in combination with chemotherapies and agents targeting the Akt pathway.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stroke, ischemic or hemorrhagic, belongs among the foremost causes of death and disability worldwide. Massive brain swelling is the leading cause of death in large hemispheric strokes and is only modestly alleviated by available treatment. Thrombolysis with tissue plasminogen activator (TPA) is the only approved therapy in acute ischemic stroke, but fear of TPA-mediated hemorrhage is often a reason for withholding this otherwise beneficial treatment. In addition, recanalization of the occluded artery (spontaneously or with thrombolysis) may cause reperfusion injury by promoting brain edema, hemorrhage, and inflammatory cell infiltration. A dominant event underlying these phenomena seems to be disruption of the blood-brain barrier (BBB). In contrast to ischemic stroke, no widely approved clinical therapy exists for intracerebral hemorrhage (ICH), which is associated with poor outcome mainly due to the mass effect of enlarging hematoma and associated brain swelling. Mast cells (MCs) are perivascularly located resident inflammatory cells which contain potent vasoactive, proteolytic, and fibrinolytic substances in their cytoplasmic granules. Experiments from our laboratory showed MC density and their state of granulation to be altered early following focal transient cerebral ischemia, and degranulating MCs were associated with perivascular edema and hemorrhage. (I) Pharmacological MC stabilization led to significantly reduced ischemic brain swelling (40%) and BBB leakage (50%), whereas pharmacological MC degranulation raised these by 90% and 50%, respectively. Pharmacological MC stabilization also revealed a 40% reduction in neutrophil infiltration. Moreover, genetic MC deficiency was associated with an almost 60% reduction in brain swelling, 50% reduction in BBB leakage, and 50% less neutrophil infiltration, compared with controls. (II) TPA induced MC degranulation in vitro. In vivo experiments with post-ischemic TPA administration demonstrated 70- to 100-fold increases in hemorrhage formation (HF) compared with controls HF. HF was significantly reduced by pharmacological MC stabilization at 3 (95%), 6 (75%), and 24 hours (95%) of follow-up. Genetic MC deficiency again supported the role of MCs, leading to 90% reduction in HF at 6 and 24 hours. Pharmacological MC stabilization and genetic MC deficiency were also associated with significant reduction in brain swelling and in neutrophil infiltration. Importantly, these effects translated into a significantly better neurological outcome and lower mortality after 24 hours. (III) Finally, in ICH experiments, pharmacological MC stabilization resulted in significantly less brain swelling, diminished growth in hematoma volume, better neurological scores, and decreased mortality. Pharmacological MC degranulation produced the opposite effects. Genetic MC deficiency revealed a beneficial effect similar to that found with pharmacological MC stabilization. In sum, the role of MCs in these clinically relevant scenarios is supported by a series of experiments performed both in vitro and in vivo. That not only genetic MC deficiency but also drugs targeting MCs could modulate these parameters (translated into better outcome and decreased mortality), suggests a potential therapeutic approach in a number of highly prevalent cerebral insults in which extensive tissue injury is followed by dangerous brain swelling and inflammatory cell infiltration. Furthermore, these experiments could hint at a novel therapy to improve the safety of thrombolytics, and a potential cellular target for those seeking novel forms of treatment for ICH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most of the diseases affecting public health, like hypertension, are multifactorial by etiology. Hypertension is influenced by genetic, life style and environmental factors. Estimation of the influence of genes to the risk of essential hypertension varies from 30 to 50%. It is plausible that in most of the cases susceptibility to hypertension is determined by the action of more than one gene. Although the exact molecular mechanism underlying essential hypertension remains obscure, several monogenic forms of hypertension have been identified. Since common genetic variations may predict, not only to susceptibility to hypertension, but also response to antihypertensive drug therapy, pharmacogenetic approaches may provide useful markers in finding relations between candidate genes and phenotypes of hypertension. The aim of this study was to identify genetic mutations and polymorphisms contributing to human hypertension, and examine their relationships to intermediate phenotypes of hypertension, such as blood pressure (BP) responses to antihypertensive drugs or biochemical laboratory values. Two groups of patients were investigated in the present study. The first group was collected from the database of patients investigated in the Hypertension Outpatient Ward, Helsinki University Central Hospital, and consisted of 399 subjects considered to have essential hypertension. Frequncies of the mutant or variant alleles were compared with those in two reference groups, healthy blood donors (n = 301) and normotensive males (n = 175). The second group of subjects with hypertension was collected prospectively. The study subjects (n=313) underwent a protocol lasting eight months, including four one-month drug treatment periods with antihypertensive medications (thiazide diuretic, β-blocker, calcium channel antagonist, and an angiotensin II receptor antagonist). BP responses and laboratory values were related to polymorphims of several candidate genes of the renin-angiotensin system (RAS). In addition, two patients with typical features of Liddle’s syndrome were screened for mutations in kidney epithelial sodium channel (ENaC) subunits. Two novel mutations causing Liddle’s syndrome were identified. The first mutation identified located in the beta-subunit of ENaC and the second mutation found located in the gamma-subunit, constituting the first identified Liddle mutation locating in the extracellular domain. This mutation showed 2-fold increase in channel activity in vitro. Three gene variants, of which two are novel, were identified in ENaC subunits. The prevalence of the variants was three times higher in hypertensive patients (9%) than in reference groups (3%). The variant carriers had increased daily urinary potassium excretion rate in relation to their renin levels compared with controls suggesting increased ENaC activity, although in vitro they did not show increased channel activity. Of the common polymorphisms of the RAS studied, angiotensin II receptor type I (AGTR1) 1166 A/C polymorphism was associated with modest changes in RAS activity. Thus, patients homozygous for the C allele tended to have increased aldosterone and decreased renin levels. In vitro functional studies using transfected HEK293 cells provided additional evidence that the AGTR1 1166 C allele may be associated with increased expression of the AGTR1. Common polymorphisms of the alpha-adducin and the RAS genes did not significantly predict BP responses to one-month monotherapies with hydroclorothiazide, bisoprolol, amlodipin, or losartan. In conclusion, two novel mutations of ENaC subunits causing Liddle’s syndrome were identified. In addition, three common ENaC polymorphisms were shown to be associated with occurrence of essential hypertension, but their exact functional and clinical consequences remain to be explored. The AGTR1 1166 C allele may modify the endocrine phenotype of hypertensive patients, when present in homozygous form. Certain widely studied polymorphisms of the ACE, angiotensinogen, AGTR1 and alpha-adducin genes did not significantly affect responses to a thiazide, β-blocker, calcium channel antagonist, and angiotensin II receptor antagonist.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Transthyretin (TTR), a tetrameric thyroxine (T4) carrier protein, is associated with a variety of amyloid diseases. In this study, we explore the potential of biphenyl ethers (BPE), which are shown to interact with a high affinity to its T4 binding site thereby preventing its aggregation and fibrillogenesis. They prevent fibrillogenesis by stabilizing the tetrameric ground state of transthyretin. Additionally, we identify two new structural templates (2-(5-mercapto-[1,3,4]oxadiazol-2-yl)-phenol and 2,3,6-trichloro-N-(4H-[1,2,4]triazol-3-yl) represented as compounds 11 and 12, respectively, throughout the manuscript) exhibiting the ability to arrest TTR amyloidosis. The dissociation constants for the binding of BPEs and compound 11 and 12 to TTR correlate with their efficacies of inhibiting amyloidosis. They also have the ability to inhibit the elongation of intermediate fibrils as well as show nearly complete (> 90%) disruption of the preformed fibrils. The present study thus establishes biphenyl ethers and compounds 11 and 12 as very potent inhibitors of TTR fibrillization and inducible cytotoxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Caveolae have been linked to diverse cellular functions and to many disease states. In this study we have used zebrafish to examine the role of caveolin-1 and caveolae during early embryonic development. During development, expression is apparent in a number of tissues including Kupffer's vesicle, tailbud, intersomite boundaries, heart, branchial arches, pronephric ducts and periderm. Particularly strong expression is observed in the sensory organs of the lateral line, the neuromasts and in the notochord where it overlaps with expression of caveolin-3. Morpholino-mediated downregulation of Cav1α caused a dramatic inhibition of neuromast formation. Detailed ultrastructural analysis, including electron tomography of the notochord, revealed that the central regions of the notochord has the highest density of caveolae of any embryonic tissue comparable to the highest density observed in any vertebrate tissue. In addition, Cav1α downregulation caused disruption of the notochord, an effect that was enhanced further by Cav3 knockdown. These results indicate an essential role for caveolin and caveolae in this vital structural and signalling component of the embryo.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sormen koukistajajännevamman korjauksen jälkeisen aktiivisen mobilisaation on todettu johtavan parempaan toiminnalliseen lopputulokseen kuin nykyisin yleisesti käytetyn dynaamisen mobilisaation. Aktiivisen mobilisaation ongelma on jännekorjauksen pettämisriskin lisääntyminen nykyisten ommeltekniikoiden riittämättömän vahvuuden vuoksi. Jännekorjauksen lujuutta on parannettu kehittämällä monisäieommeltekniikoita, joissa jänteeseen tehdään useita rinnakkaisia ydinompeleita. Niiden kliinistä käyttöä rajoittaa kuitenkin monimutkainen ja aikaa vievä tekninen suoritus. Käden koukistajajännekorjauksessa käytetään yleisesti sulamattomia ommelmateriaaleja. Nykyiset käytössä olevat biohajoavat langat heikkenevät liian nopeasti jänteen paranemiseen nähden. Biohajoavan laktidistereokopolymeeri (PLDLA) 96/4 – langan vetolujuuden puoliintumisajan sekä kudosominaisuuksien on aiemmin todettu soveltuvan koukistajajännekorjaukseen. Tutkimuksen tavoitteena oli kehittää välittömän aktiivisen mobilisaation kestävä ja toteutukseltaan yksinkertainen käden koukistajajännekorjausmenetelmä biohajoavaa PLDLA 96/4 –materiaalia käyttäen. Tutkimuksessa analysoitiin viiden eri yleisesti käytetyn koukistajajänneompeleen biomekaanisia ominaisuuksia staattisessa vetolujuustestauksessa ydinompeleen rakenteellisten ominaisuuksien – 1) säikeiden (lankojen) lukumäärän, 2) langan paksuuden ja 3) ompeleen konfiguraation – vaikutuksen selvittämiseksi jännekorjauksen pettämiseen ja vahvuuteen. Jännekorjausten näkyvän avautumisen todettiin alkavan perifeerisen ompeleen pettäessä voima-venymäkäyrän myötöpisteessä. Ydinompeleen lankojen lukumäärän lisääminen paransi ompeleen pitokykyä jänteessä ja suurensi korjauksen myötövoimaa. Sen sijaan paksumman (vahvemman) langan käyttäminen tai ompeleen konfiguraatio eivät vaikuttaneet myötövoimaan. Tulosten perusteella tutkittiin mahdollisuuksia lisätä ompeleen pitokykyä jänteestä yksinkertaisella monisäieompeleella, jossa ydinommel tehtiin kolmen säikeen polyesterilangalla tai nauhamaisen rakenteen omaavalla kolmen säikeen polyesterilangalla. Nauhamainen rakenne lisäsi merkitsevästi ompeleen pitokykyä jänteessä parantaen myötövoimaa sekä maksimivoimaa. Korjauksen vahvuus ylitti aktiivisen mobilisaation jännekorjaukseen kohdistaman kuormitustason. PLDLA 96/4 –langan soveltuvuutta koukistajajännekorjaukseen selvitettiin tutkimalla langan biomekaanisia ominaisuuksia ja solmujen pito-ominaisuuksia staattisessa vetolujuustestauksessa verrattuna yleisimmin jännekorjauksessa käytettävään punottuun polyesterilankaan (Ticron®). PLDLA –langan todettiin soveltuvan hyvin koukistajajännekorjaukseen, sillä se on polyesterilankaa venymättömämpi ja solmujen pitävyys on parempi. Viimeisessä vaiheessa tutkittiin PLDLA 96/4 –langasta valmistetulla kolmisäikeisellä, nauhamaisella jännekorjausvälineellä tehdyn jännekorjauksen kestävyyttä staattisessa vetolujuustestauksessa sekä syklisessä kuormituksessa, joka simuloi staattista testausta paremmin mobilisaation toistuvaa kuormitusta. PLDLA-korjauksen vahvuus ylitti sekä staattisessa että syklisessä kuormituksessa aktiivisen mobilisaation edellyttämän vahvuuden. Nauhamaista litteää ommelmateriaalia ei aiemmin ole tutkittu tai käytetty käden koukistajajännekorjauksessa. Tässä tutkimuksessa ommelmateriaalin nauhamainen rakenne paransi merkitsevästi jännekorjauksen vahvuutta, minkä arvioidaan johtuvan lisääntyneestä kontaktipinnasta jänteen ja ommelmateriaalin välillä estäen ompeleen läpileikkautumista jänteessä. Tutkimuksessa biohajoavasta PLDLA –materiaalista valmistetulla rakenteeltaan nauhamaisella kolmisäikeisellä langalla tehdyn jännekorjauksen vahvuus saavutti aktiivisen mobilisaation edellyttämän tason. Lisäksi uusi menetelmä on helppokäyttöinen ja sillä vältetään perinteisten monisäieompeleiden tekniseen suoritukseen liittyvät ongelmat.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article contributes to the discussion by analysing how users of the leading online 3D printing design repository Thingiverse manage their intellectual property (IP). 3D printing represents a fruitful case study for exploring the relationship between IP norms and practitioner culture. Although additive manufacturing technology has existed for decades, 3D printing is on the cusp of a breakout into the technological mainstream – hardware prices are falling; designs are circulating widely; consumer-friendly platforms are multiplying; and technological literacy is rising. Analysing metadata from more than 68,000 Thingiverse design files collected from the site, we examine the licensing choices made by users and explore the way this shapes the sharing practices of the site’s users. We also consider how these choices and practices connect with wider attitudes towards sharing and intellectual property in 3D printing communities. A particular focus of the article is how Thingiverse structures its regulatory framework to avoid IP liability, and the extent to which this may have a bearing on users’ conduct. The paper has three sections. First, we will offer a description of Thingiverse and how it operates in the 3D printing ecosystem, noting the legal issues that have arisen regarding Thingiverse’s Terms of Use and its allocation of intellectual property rights. Different types of Thingiverse licences will be detailed and explained. Second, the empirical metadata we have collected from Thingiverse will be presented, including the methods used to obtain this information. Third, we will present findings from this data on licence choice and the public availability of user designs. Fourth, we will look at the implications of these findings and our conclusions regarding the particular kind of sharing ethic that is present in Thingiverse; we also consider the “closed” aspects of this community and what this means for current debates about “open” innovation.