931 resultados para Cournot equilibrium, non-cooperative oligopoly, quasi-competitiveness, stability
Resumo:
Highlights - Irrespective of the euro crisis, a European banking union makes sense, including for non-euro area countries, because of the extent of European Union financial integration. The Single Supervisory Mechanism (SSM) is the first element of the banking union. - From the point of view of non-euro countries, the draft SSM regulation as amended by the EU Council includes strong safeguards relating to decision-making, accountability, attention to financial stability in small countries and the applicability of national macro-prudential measures. Non-euro countries will also have the right to leave the SSM and thereby exempt themselves from a supervisory decision. - The SSM by itself cannot bring the full benefits of the banking union, but would foster financial integration, improve the supervision of cross-border banks, ensure greater consistency of supervisory practices, increase the quality of supervision, avoid competitive distortions and provide ample supervisory information. - While the decision to join the SSM is made difficult by the uncertainty about other elements of the banking union, including the possible burden sharing, we conclude that non-euro EU members should stand ready to join the SSM and be prepared for the negotiations of the other elements of the banking union.
Resumo:
This research sought to determine the implications of a non-traded differentiated commodity produced with increasing returns to scale, for the welfare of countries that allowed free international migration. We developed two- and three-country Ricardian models in which labor was the only factor of production. The countries traded freely in homogeneous goods produced with constant returns to scale. Each also had a non-traded differentiated good sector where production took place using increasing returns to scale technology. Then we allowed for free international migration between two of the countries and observed what happened to welfare in both countries as indicated by their per capita utilities in the new equilibrium relative to their pre-migration utilities. ^ Preferences of consumers were represented by a two-tier utility function [Dixit and Stiglitz 1977]. As migration took place it impacted utility in two ways. The expanding country enjoyed the positive effect of increased product diversity in the non-traded good sector. However, it also suffered adverse terms-of-trade as its production cost declined. The converse was true for the contracting country. To determine the net impact on welfare we derived indirect per capita utility functions of the countries algebraically and graphically. Then we juxtaposed the graphs of the utility functions to obtain possible general equilibria. These we used to observe the welfare outcomes. ^ We found that the most likely outcomes were either that both countries gained, or one country lost while the other gained. We were, however, able to generate cases where both countries lost as a result of allowing free inter-country migration. This was most likely to happen when the shares of income spent on each country's export good differed significantly. In the three country world when we allowed two of the countries to engage in preferential trading arrangements while imposing a prohibitive tariff on imports from the third country welfare of the partner countries declined. When inter-union migration was permitted welfare declined even further. This we showed was due to the presence of the non-traded good sector. ^
Resumo:
Cooperative communication has gained much interest due to its ability to exploit the broadcasting nature of the wireless medium to mitigate multipath fading. There has been considerable amount of research on how cooperative transmission can improve the performance of the network by focusing on the physical layer issues. During the past few years, the researchers have started to take into consideration cooperative transmission in routing and there has been a growing interest in designing and evaluating cooperative routing protocols. Most of the existing cooperative routing algorithms are designed to reduce the energy consumption; however, packet collision minimization using cooperative routing has not been addressed yet. This dissertation presents an optimization framework to minimize collision probability using cooperative routing in wireless sensor networks. More specifically, we develop a mathematical model and formulate the problem as a large-scale Mixed Integer Non-Linear Programming problem. We also propose a solution based on the branch and bound algorithm augmented with reducing the search space (branch and bound space reduction). The proposed strategy builds up the optimal routes from each source to the sink node by providing the best set of hops in each route, the best set of relays, and the optimal power allocation for the cooperative transmission links. To reduce the computational complexity, we propose two near optimal cooperative routing algorithms. In the first near optimal algorithm, we solve the problem by decoupling the optimal power allocation scheme from optimal route selection. Therefore, the problem is formulated by an Integer Non-Linear Programming, which is solved using a branch and bound space reduced method. In the second near optimal algorithm, the cooperative routing problem is solved by decoupling the transmission power and the relay node se- lection from the route selection. After solving the routing problems, the power allocation is applied in the selected route. Simulation results show the algorithms can significantly reduce the collision probability compared with existing cooperative routing schemes.
Resumo:
The atmospheric seasonal cycle of the North Atlantic region is dominated by meridional movements of the circulation systems: from the tropics, where the West African Monsoon and extreme tropical weather events take place, to the extratropics, where the circulation is dominated by seasonal changes in the jetstream and extratropical cyclones. Climate variability over the North Atlantic is controlled by various mechanisms. Atmospheric internal variability plays a crucial role in the mid-latitudes. However, El Niño-Southern Oscillation (ENSO) is still the main source of predictability in this region situated far away from the Pacific. Although the ENSO influence over tropical and extra-tropical areas is related to different physical mechanisms, in both regions this teleconnection seems to be non-stationary in time and modulated by multidecadal changes of the mean flow. Nowadays, long observational records (greater than 100 years) and modeling projects (e.g., CMIP) permit detecting non-stationarities in the influence of ENSO over the Atlantic basin, and further analyzing its potential mechanisms. The present article reviews the ENSO influence over the Atlantic region, paying special attention to the stability of this teleconnection over time and the possible modulators. Evidence is given that the ENSO–Atlantic teleconnection is weak over the North Atlantic. In this regard, the multidecadal ocean variability seems to modulate the presence of teleconnections, which can lead to important impacts of ENSO and to open windows of opportunity for seasonal predictability.
Resumo:
Empirical studies of education programs and systems, by nature, rely upon use of student outcomes that are measurable. Often, these come in the form of test scores. However, in light of growing evidence about the long-run importance of other student skills and behaviors, the time has come for a broader approach to evaluating education. This dissertation undertakes experimental, quasi-experimental, and descriptive analyses to examine social, behavioral, and health-related mechanisms of the educational process. My overarching research question is simply, which inside- and outside-the-classroom features of schools and educational interventions are most beneficial to students in the long term? Furthermore, how can we apply this evidence toward informing policy that could effectively reduce stark social, educational, and economic inequalities?
The first study of three assesses mechanisms by which the Fast Track project, a randomized intervention in the early 1990s for high-risk children in four communities (Durham, NC; Nashville, TN; rural PA; and Seattle, WA), reduced delinquency, arrests, and health and mental health service utilization in adolescence through young adulthood (ages 12-20). A decomposition of treatment effects indicates that about a third of Fast Track’s impact on later crime outcomes can be accounted for by improvements in social and self-regulation skills during childhood (ages 6-11), such as prosocial behavior, emotion regulation and problem solving. These skills proved less valuable for the prevention of mental and physical health problems.
The second study contributes new evidence on how non-instructional investments – such as increased spending on school social workers, guidance counselors, and health services – affect multiple aspects of student performance and well-being. Merging several administrative data sources spanning the 1996-2013 school years in North Carolina, I use an instrumental variables approach to estimate the extent to which local expenditure shifts affect students’ academic and behavioral outcomes. My findings indicate that exogenous increases in spending on non-instructional services not only reduce student absenteeism and disciplinary problems (important predictors of long-term outcomes) but also significantly raise student achievement, in similar magnitude to corresponding increases in instructional spending. Furthermore, subgroup analyses suggest that investments in student support personnel such as social workers, health services, and guidance counselors, in schools with concentrated low-income student populations could go a long way toward closing socioeconomic achievement gaps.
The third study examines individual pathways that lead to high school graduation or dropout. It employs a variety of machine learning techniques, including decision trees, random forests with bagging and boosting, and support vector machines, to predict student dropout using longitudinal administrative data from North Carolina. I consider a large set of predictor measures from grades three through eight including academic achievement, behavioral indicators, and background characteristics. My findings indicate that the most important predictors include eighth grade absences, math scores, and age-for-grade as well as early reading scores. Support vector classification (with a high cost parameter and low gamma parameter) predicts high school dropout with the highest overall validity in the testing dataset at 90.1 percent followed by decision trees with boosting and interaction terms at 89.5 percent.
Resumo:
This thesis deals with the evaporation of non-ideal liquid mixtures using a multicomponent mass transfer approach. It develops the concept of evaporation maps as a convenient way of representing the dynamic composition changes of ternary mixtures during an evaporation process. Evaporation maps represent the residual composition of evaporating ternary non-ideal mixtures over the full range of composition, and are analogous to the commonly-used residue curve maps of simple distillation processes. The evaporation process initially considered in this work involves gas-phase limited evaporation from a liquid or wetted-solid surface, over which a gas flows at known conditions. Evaporation may occur into a pure inert gas, or into one pre-loaded with a known fraction of one of the ternary components. To explore multicomponent masstransfer effects, a model is developed that uses an exact solution to the Maxwell-Stefan equations for mass transfer in the gas film, with a lumped approach applied to the liquid phase. Solutions to the evaporation model take the form of trajectories in temperaturecomposition space, which are then projected onto a ternary diagram to form the map. Novel algorithms are developed for computation of pseudo-azeotropes in the evaporating mixture, and for calculation of the multicomponent wet-bulb temperature at a given liquid composition. A numerical continuation method is used to track the bifurcations which occur in the evaporation maps, where the composition of one component of the pre-loaded gas is the bifurcation parameter. The bifurcation diagrams can in principle be used to determine the required gas composition to produce a specific terminal composition in the liquid. A simple homotopy method is developed to track the locations of the various possible pseudo-azeotropes in the mixture. The stability of pseudo-azeotropes in the gas-phase limited case is examined using a linearized analysis of the governing equations. Algorithms for the calculation of separation boundaries in the evaporation maps are developed using an optimization-based method, as well as a method employing eigenvectors derived from the linearized analysis. The flexure of the wet-bulb temperature surface is explored, and it is shown how evaporation trajectories cross ridges and valleys, so that ridges and valleys of the surface do not coincide with separation boundaries. Finally, the assumption of gas-phase limited mass transfer is relaxed, by employing a model that includes diffusion in the liquid phase. A finite-volume method is used to solve the system of partial differential equations that results. The evaporation trajectories for the distributed model reduce to those of the lumped (gas-phase limited) model as the diffusivity in the liquid increases; under the same gas-phase conditions the permissible terminal compositions of the distributed and lumped models are the same.
Resumo:
Dissolution of non-aqueous phase liquids (NAPLs) or gases into groundwater is a key process, both for contamination problems originating from organic liquid sources, and for dissolution trapping in geological storage of CO2. Dissolution in natural systems typically will involve both high and low NAPL saturations and a wide range of pore water flow velocities within the same source zone for dissolution to groundwater. To correctly predict dissolution in such complex systems and as the NAPL saturations change over time, models must be capable of predicting dissolution under a range of saturations and flow conditions. To provide data to test and validate such models, an experiment was conducted in a two-dimensional sand tank, where the dissolution of a spatially variable, 5x5 cm**2 DNAPL tetrachloroethene source was carefully measured using x-ray attenuation techniques at a resolution of 0.2x0.2 cm**2. By continuously measuring the NAPL saturations, the temporal evolution of DNAPL mass loss by dissolution to groundwater could be measured at each pixel. Next, a general dissolution and solute transport code was written and several published rate-limited (RL) dissolution models and a local equilibrium (LE) approach were tested against the experimental data. It was found that none of the models could adequately predict the observed dissolution pattern, particularly in the zones of higher NAPL saturation. Combining these models with a model for NAPL pool dissolution produced qualitatively better agreement with experimental data, but the total matching error was not significantly improved. A sensitivity study of commonly used fitting parameters further showed that several combinations of these parameters could produce equally good fits to the experimental observations. The results indicate that common empirical model formulations for RL dissolution may be inadequate in complex, variable saturation NAPL source zones, and that further model developments and testing is desirable.
Resumo:
Zr-Excel alloy (Zr-3.5Sn-0.8Nb-0.8Mo) is a dual phase (α + β) alloy in the as-received pressure tube condition. It has been proposed to be the pressure tube candidate material for the Generation-IV CANDU-Supercritical Water Reactor (CANDU-SCWR). In this dissertation, the effects of heavy ion irradiation, deformation and heat treatment on the microstructures of the alloy were investigated to enable us to have a better understanding of the potential in-reactor performance of this alloy. In-situ heavy ion (1 MeV) irradiation was performed to study the nucleation and evolution of dislocation loops in both α- and β-Zr. Small and dense type dislocation loops form under irradiation between 80 and 450 °C. The number density tends to saturate at ~ 0.1 dpa. Compared with the α-Zr, the defect yield is much lower in β-Zr. The stabilities of the metastable phases (β-Zr and ω-Zr) and the thermal-dynamically equilibrium phase, fcc Zr(Mo, Nb)2, under irradiation were also studied at different temperatures. Chemi-STEM elemental mapping was carried out to study the elemental redistribution caused by irradiation. The stability of these phases and the elemental redistribution are strongly dependent on irradiation temperature. In-situ time-of-flight neutron diffraction tensile and compressive tests were carried out at different temperatures to monitor lattice strain evolutions of individual grain families during these tests. The β-Zr is the strengthening phase in this alloy in the as-received plate material. Load is transferred to the β-Zr after yielding of the α-Zr grains. The temperature dependence of static strain aging and the yielding sequence of the individual grain families were discussed. Strong tensile/compressive asymmetry was observed in the {0002} grain family at room temperature. The microstructures of the sample deformed at 400 °C and the samples only subjected to heat treatment at the same temperature were characterized with TEM. Concentration of β phase stabilizers in the β grain and the morphology of β grain have significant effect on the stability of β- and ω-Zr under thermal treatment. Applied stress/strain enhances the decomposition of isothermal ω phase but suppresses α precipitation inside the β grains at high temperature. An α → ω/ZrO phase transformation was observed in the thin foils of Zr-Excel alloy and pure Zr during in-situ heating at 700 °C in TEM.
Resumo:
In the spirit of the proposals of the Agenda 2020 about the structural role of cinema in the configuration of the European identities, this article highlights the significance of the national cinemas in non-hegemonic languages in the conformation of a diverse European culture. Following this perspective, we use Galician cinema as a case study in which we analyze the presence (or more precisely the absence) of the Galician language in the original version in the feature films released between 2008 and 2012.This proposal is hosted by the I+D+I project eDCINEMA: “Towards the European Digital Space. The role of small cinemas in original version” (Ref. CSO2012-35784) financed by the Ministry of Economy and Competitiveness of Spain.
Resumo:
Context: Model atmosphere analyses have been previously undertaken for both Galactic and extragalactic B-type supergiants. By contrast, little attention has been given to a comparison of the properties of single supergiants and those that are members of multiple systems.
Aims: Atmospheric parameters and nitrogen abundances have been estimated for all the B-type supergiants identified in the VLT-FLAMES Tarantula survey. These include both single targets and binary candidates. The results have been analysed to investigate the role of binarity in the evolutionary history of supergiants.
Methods: tlusty non-local thermodynamic equilibrium (LTE) model atmosphere calculations have been used to determine atmospheric parameters and nitrogen abundances for 34 single and 18 binary supergiants. Effective temperatures were deduced using the silicon balance technique, complemented by the helium ionisation in the hotter spectra. Surface gravities were estimated using Balmer line profiles and microturbulent velocities deduced using the silicon spectrum. Nitrogen abundances or upper limits were estimated from the Nii spectrum. The effects of a flux contribution from an unseen secondary were considered for the binary sample. Results. We present the first systematic study of the incidence of binarity for a sample of B-type supergiants across the theoretical terminal age main sequence (TAMS). To account for the distribution of effective temperatures of the B-type supergiants it may be necessary to extend the TAMS to lower temperatures. This is also consistent with the derived distribution of mass discrepancies, projected rotational velocities and nitrogen abundances, provided that stars cooler than this temperature are post-red supergiant objects. For all the supergiants in the Tarantula and in a previous FLAMES survey, the majority have small projected rotational velocities. The distribution peaks at about 50 km s-1 with 65% in the range 30 km s-1 ≤ νe sin i ≤ 60 km s-1. About ten per cent have larger ve sin i (≥100 km s-1), but surprisingly these show little or no nitrogen enhancement. All the cooler supergiants have low projected rotational velocities of ≤70 km s-1 and high nitrogen abundance estimates, implying that either bi-stability braking or evolution on a blue loop may be important. Additionally, there is a lack of cooler binaries, possibly reflecting the small sample sizes. Single-star evolutionary models, which include rotation, can account for all of the nitrogen enhancement in both the single and binary samples. The detailed distribution of nitrogen abundances in the single and binary samples may be different, possibly reflecting differences in their evolutionary history.
Conclusions: The first comparative study of single and binary B-type supergiants has revealed that the main sequence may be significantly wider than previously assumed, extending to Teff = 20 000 K. Some marginal differences in single and binary atmospheric parameters and abundances have been identified, possibly implying non-standard evolution for some of the sample. This sample as a whole has implications for several aspects of our understanding of the evolutionary status of blue supergiants.
Resumo:
This study considers a dual-hop cognitive inter-vehicular relay-assisted communication system where all
communication links are non-line of sight ones and their fading is modelled by the double Rayleigh fading distribution.
Road-side relays (or access points) implementing the decode-and-forward relaying protocol are employed and one of
them is selected according to a predetermined policy to enable communication between vehicles. The performance of
the considered cognitive cooperative system is investigated for Kth best partial and full relay selection (RS) as well as
for two distinct fading scenarios. In the first scenario, all channels are double Rayleigh distributed. In the second
scenario, only the secondary source to relay and relay to destination channels are considered to be subject to double
Rayleigh fading whereas, channels between the secondary transmitters and the primary user are modelled by the
Rayleigh distribution. Exact and approximate expressions for the outage probability performance for all considered RS
policies and fading scenarios are presented. In addition to the analytical results, complementary computer simulated
performance evaluation results have been obtained by means of Monte Carlo simulations. The perfect match between
these two sets of results has verified the accuracy of the proposed mathematical analysis.
Resumo:
Wind generation in highly interconnected power networks creates local and centralised stability issues based on their proximity to conventional synchronous generators and load centres. This paper examines the large disturbance stability issues (i.e. rotor angle and voltage stability) in power networks with geographically distributed wind resources in the context of a number of dispatch scenarios based on profiles of historical wind generation for a real power network. Stability issues have been analysed using novel stability indices developed from dynamic characteristics of wind generation. The results of this study show that localised stability issues worsen when significant penetration of both conventional and wind generation is present due to their non-complementary characteristics. In contrast, network stability improves when either high penetration of wind and synchronous generation is present in the network. Therefore, network regions can be clustered into two distinct stability groups (i.e. superior stability and inferior stability regions). Network stability improves when a voltage control strategy is implemented at wind farms, however both stability clusters remain unchanged irrespective of change in the control strategy. Moreover, this study has shown that the enhanced fault ride-through (FRT) strategy for wind farms can improve both voltage and rotor angle stability locally, but only a marginal improvement is evident in neighbouring regions.
Resumo:
Objectives: To determine if providing informal care to a co-resident with dementia symptoms places an additional risk on the likelihood of poor mental health or mortality compared to co-resident non-caregivers.
Design: A quasi-experimental design of caregiving and non-caregiving co-residents of individuals with dementia symptoms, providing a natural comparator for the additive effects of caregiving on top of living with an individual with dementia symptoms.
Methods: Census records, providing information on household structure, intensity of caregiving, presence of dementia symptoms and self-reported mental health, were linked to mortality records over the following 33 months. Multi-level regression models were constructed to determine the risk of poor mental health and death in co-resident caregivers of individuals with dementia symptoms compared to co-resident non-caregivers, adjusting for the clustering of individuals within households.
Results: The cohort consisted of 10,982 co-residents (55.1% caregivers), with 12.1% of non-caregivers reporting poor mental health compared to 8.4% of intense caregivers (>20 hours of care per week). During follow-up the cohort experienced 560 deaths (245 to caregivers). Overall, caregiving co-residents were at no greater risk of poor mental health but had lower mortality risk than non-caregiving co-residents (ORadj=0.93, 95% CI 0.79, 1.10 and ORadj=0.67, 95% CI 0.56, 0.81, respectively); this lower mortality risk was also seen amongst the most intensive caregivers (ORadj=0.65, 95% CI 0.53, 0.79).
Conclusion: Caregiving poses no additional risk to mental health over and above the risk associated with merely living with someone with dementia, and is associated with a lower mortality risk compared to non-caregiving co-residents.
Resumo:
We present the first 3D simulation of the last minutes of oxygen shell burning in an 18 solar mass supernova progenitor up to the onset of core collapse. A moving inner boundary is used to accurately model the contraction of the silicon and iron core according to a 1D stellar evolution model with a self-consistent treatment of core deleptonization and nuclear quasi-equilibrium. The simulation covers the full solid angle to allow the emergence of large-scale convective modes. Due to core contraction and the concomitant acceleration of nuclear burning, the convective Mach number increases to ~0.1 at collapse, and an l=2 mode emerges shortly before the end of the simulation. Aside from a growth of the oxygen shell from 0.51 to 0.56 solar masses due to entrainment from the carbon shell, the convective flow is reasonably well described by mixing length theory, and the dominant scales are compatible with estimates from linear stability analysis. We deduce that artificial changes in the physics, such as accelerated core contraction, can have precarious consequences for the state of convection at collapse. We argue that scaling laws for the convective velocities and eddy sizes furnish good estimates for the state of shell convection at collapse and develop a simple analytic theory for the impact of convective seed perturbations on shock revival in the ensuing supernova. We predict a reduction of the critical luminosity for explosion by 12--24% due to seed asphericities for our 3D progenitor model relative to the case without large seed perturbations.
Resumo:
This purely theoretical thesis covers aspects of two contemporary research fields: the non-equilibrium dynamics in quantum systems and the electronic properties of three-dimensional topological insulators. In the first part we investigate the non-equilibrium dynamics in closed quantum systems. Thanks to recent technologies, especially from the field of ultracold quantum gases, it is possible to realize such systems in the laboratory. The focus is on the influence of hydrodynamic slow modes on the thermalization process. Generic systems in equilibrium, either classical or quantum, in equilibrium are described by thermodynamics. This is characterized by an ensemble of maximal entropy, but constrained by macroscopically conserved quantities. We will show that these conservation laws slow down thermalization and the final equilibrium state can be approached only algebraically in time. When the conservation laws are violated thermalization takes place exponential in time. In a different study we calculate probability distributions of projective quantum measurements. Newly developed quantum microscopes provide the opportunity to realize new measurement protocols which go far beyond the conventional measurements of correlation functions. The second part of this thesis is dedicated to a new class of materials known as three-dimensional topological insulators. Also here new experimental techniques have made it possible to fabricate these materials to a high enough quality that their topological nature is revealed. However, their transport properties are not fully understood yet. Motivated by unusual experimental results in the optical conductivity we have investigated the formation and thermal destruction of spatially localized electron- and hole-doped regions. These are caused by charged impurities which are introduced into the material in order to make the bulk insulating. Our theoretical results are in agreement with the experiment and can explain the results semi-quantitatively. Furthermore, we study emergent lengthscales in the bulk as well as close to the conducting surface.