960 resultados para CRITICAL-BEHAVIOR
Resumo:
Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.
Resumo:
Due to its remarkable mechanical and biological properties, there is considerable interest in understanding, and replicating, spider silk's stress-processing mechanisms and structure-function relationships. Here, we investigate the role of water in the nanoscale mechanics of the different regions in the spider silk fibre, and their relative contributions to stress processing. We propose that the inner core region, rich in spidroin II, retains water due to its inherent disorder, thereby providing a mechanism to dissipate energy as it breaks a sacrificial amide-water bond and gains order under strain, forming a stronger amide-amide bond. The spidroin I-rich outer core is more ordered under ambient conditions and is inherently stiffer and stronger, yet does not on its own provide high toughness. The markedly different interactions of the two proteins with water, and their distribution across the fibre, produce a stiffness differential and provide a balance between stiffness, strength and toughness under ambient conditions. Under wet conditions, this balance is destroyed as the stiff outer core material reverts to the behaviour of the inner core.
Resumo:
The imaging and characterization of single-molecule reaction events is essential to both extending our basic understanding of chemistry and applying this understanding to challenges at the frontiers of technology, for example, in nanoelectronics. Specifically, understanding the behavior of individual molecules can elucidate processes critical to the controlled synthesis of materials for applications in multiple nanoscale technologies. Here, we report the synthesis of an important semiconducting organic molecule through an unprecedented reaction observed with submolecular resolution by scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. Our images reveal a sulfur abstraction and cyclization reaction that converts tetrathienoanthracene precursors into pentacene on the Ni(111) surface. The identity of the final reaction product was confirmed by time-of-flight secondary ion mass spectrometry (TOF-SIMS). This reaction has no known literature analogue, and highlights the power of local-probe techniques for exploring new chemical pathways.
Resumo:
Consumer electronics increasingly find their way into cars and are often portrayed as unwanted distractions. As part of our endeavour to capitalise on these technologies as safety tools rather than safety threats, we suggest to use smartphones, head-up displays, vehicle interfaces, and other digital gadgets: a) as readily available and lightweight sensing devices, and b) as platforms for engaging interventions that provide safe stimuli in real- time while driving. In our effort to make safe driving behaviours more fun, we explore ways to apply gamification to driving. In this paper, we illustrate the need for a careful balance between fun and safety and reveal ethical issues that arise when introducing new technology interventions into this complex and safety- critical design space.
Resumo:
This is the first comprehensive report on the calculation of segment size, which signifies the asic unit of flow in long chain plasticizing liquids, by a novel multi-pronged approach. Unlike,low molecular weight liquids and high polymer melts these complex long chain liquids encompasses the least understood domain of the liquid state. In the present work the flow behaviour of carboxylate ester (300-900 Da) has been explained through segmental motion taking into account the independence of molecular weight region. The segment size have been calculated by various methods based on satistical thermodynamics, molecular dynamics and group additivity nd their merits analysed.
Resumo:
We study the generation of defects when a quantum spin system is quenched through a multicritical point by changing a parameter of the Hamiltonian as t/tau, where tau is the characteristic timescale of quenching. We argue that when a quantum system is quenched across a multicritical point, the density of defects (n) in the final state is not necessarily given by the Kibble-Zurek scaling form n similar to 1/tau(d nu)/((z nu+1)), where d is the spatial dimension, and. and z are respectively the correlation length and dynamical exponent associated with the quantum critical point. We propose a generalized scaling form of the defect density given by n similar to 1/(tau d/(2z2)), where the exponent z(2) determines the behavior of the off-diagonal term of the 2 x 2 Landau-Zener matrix at the multicritical point. This scaling is valid not only at a multicritical point but also at an ordinary critical point.
Resumo:
An accretion flow is necessarily transonic around a black hole.However, around a neutron star it may or may not be transonic, depending on the inner disk boundary conditions influenced by the neutron star. I will discuss various transonic behavior of the disk fluid in general relativistic (or pseudo general relativistic) framework. I will address that there are four types of sonic/critical point. possible to form in an accretion disk. It will be shown that how the fluid properties including location of sonic point's vary with angular momentum of the compact object which controls the overall disk dynamics and outflows.
Resumo:
Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.
Resumo:
Studies on melt rheological properties of blends of low density polyethylene (LDPE) with selected grades of linear low density polyethylene (LLDPE), which differ widely in their melt flow indices, are reported, The data obtained in a capillary rheometer are presented to describe the effects of blend composition and shear rate on flow behavior index, melt viscosity, and melt elasticity. In general, blending of LLDPE I that has a low melt flow index (2 g/10 min) with LDPE results in a decrease of its melt viscosity, processing temperature, and the tendency of extrudate distortion, depending on blending ratio. A blending ratio around 20-30% LLDPE I seems optimum from the point of view of desirable improvement in processability behavior. On the other hand, blending of LLDPE II that has a high melt flow index (10 g/10 min) with LDPE offers a distinct advantage in increasing the pseudoplasticity of LDPE/LLDPE II blends.
Resumo:
"This important book translates seven landmark essays by one of Japan’s most respected and influential legal thinkers. While Takao Tanase concedes that law might not matter as much in Japan as it does in the United States, in a provocative challenge to socio-legal researchers and comparative lawyers, he asks: why should it? The issue, he contends, is not whether law matters to society; it is how society matters to law."--Publisher website
Resumo:
Purpose In the mainstream relationship management literature, critical appraisal of the relationship paradigm in an international setting is virtually non-existent. The extant literature reveals a gap in terms of linking relationship management theories with international management. Furthermore, little research attention has been paid to synthesise the existing theories in a cohesive manner towards developing a theoretical paradigm in the interface of the importer-supplier relationship dyad. Thus, the purpose of this paper is to strengthen the theoretical grounds of relationship marketing in an international setting in an importer-exporter relationship context. Design/methodology/approach The paper follows a comprehensive review approach and applies the fundamental theory of trust and commitment to identify the relational factors. More precisely, the paper identifies and applies other relevant theories such as internationalisation process theory, resource-based theory of the firm, dependence theory and transaction cost theory in developing an innovative theoretical paradigm. Findings Based on the integration of extant theories, this paper proposes a new direction in the theoretical realm of the trust and commitment building process within an importer and supplier relationship management paradigm. The research concludes that trust and commitment are the focal factors within the international relational paradigm. Research limitations/implications The proposed research direction suggests an emerging framework integrating mainstream theoretical variables of trust and commitment in importer and foreign-supplier context. This novel framework has the potential for use in further research. Originality/value This paper advances a grounded theoretical exploration within an international management domain in the context of importers and foreign-suppliers.
Resumo:
Gender identity is the extent to which an individual identifies with masculine or feminine personality traits. Sex roles in Western societies continue to evolve, so this research examines the developing relationship between gender identity and consumer responses to gendered branding. Grounded in self-congruency theory [Sirgy, M. J. (1982). Self-concept in consumer behavior: A critical review. Journal of Consumer Research, 9, 287–300], the present research reports an experiment that supports a congruence relationship between gender identity and brand response. Masculine consumers prefer masculine brands. The results also show incongruent brand rejection where masculine consumers react negatively to feminine brands although feminine consumers are more accepting of masculine brands. Further, the results suggest that gender identity is a more effective dimension for customer segmentation than biological sex. Overall, the results suggest that masculine brands are more effective than other gendered brand profiles for masculine, feminine, and androgynous consumers.
Resumo:
Patents provide monopoly rights to patent holders. There are safeguards in patent regime to ensure that exclusive right of the patent holder is not misused. Compulsory licensing is one of the safeguards provided under TRIPS using which patent granting state may allow a third party to exploit the invention without patent holder’s consent upon terms and conditions decided by the government. This concept existed since 1623 and was not introduced by TRIPS for the first time. But this mechanism has undergone significant changes especially in post-TRIPS era. History of evolution of compulsory licensing is one of the least explored areas of intellectual property law. This paper undertakes an analysis of different phases in the evolution of the compulsory licensing mechanism and sheds light on reasons behind developments especially after TRIPS.
Resumo:
Based on Terzaghi's consolidation theory, percent of consolidation, U, versus the time factor, T, relationship for constant/linear excess pore water pressure distribution, it is possible to generate theoretical log10(H2/t) versus U curves where H is the length of the drainage path of a consolidating layer, and t is the time for different known values of the coefficient of consolidation, cν. A method has been developed wherein both the theoretical and experimental behavior of soils during consolidation can be simultaneously compared and studied on the same plot. The experimental log10(H2/t) versus U curves have been compared with the theoretical curves. The deviations of the experimental behavior from the theory are explained in terms of initial compression and secondary compression. Analysis of results indicates that the secondary compression essentially starts from about 60% consolidation. A simple procedure is presented for calculating the value of cv from the δ-t data using log10(H2/t) versus U plot.
Resumo:
Robot Path Planning (RPP) in dynamic environments is a search problem based on the examination of collision-free paths in the presence of dynamic and static obstacles. Many techniques have been developed to solve this problem. Trapping in a local minima and maintaining a Real-Time performance are known as the two most important challenges that these techniques face to solve such problem. This study presents a comprehensive survey of the various techniques that have been proposed in this domain. As part of this survey, we include a classification of the approaches and identify their methods.