Defect production due to quenching through a multicritical point
Data(s) |
01/02/2009
|
---|---|
Resumo |
We study the generation of defects when a quantum spin system is quenched through a multicritical point by changing a parameter of the Hamiltonian as t/tau, where tau is the characteristic timescale of quenching. We argue that when a quantum system is quenched across a multicritical point, the density of defects (n) in the final state is not necessarily given by the Kibble-Zurek scaling form n similar to 1/tau(d nu)/((z nu+1)), where d is the spatial dimension, and. and z are respectively the correlation length and dynamical exponent associated with the quantum critical point. We propose a generalized scaling form of the defect density given by n similar to 1/(tau d/(2z2)), where the exponent z(2) determines the behavior of the off-diagonal term of the 2 x 2 Landau-Zener matrix at the multicritical point. This scaling is valid not only at a multicritical point but also at an ordinary critical point. |
Formato |
application/pdf |
Identificador |
http://eprints.iisc.ernet.in/19561/1/5.pdf Divakaran, Uma and Mukherjee, Victor and Dutta, Amit and Sen, Diptiman (2009) Defect production due to quenching through a multicritical point. In: Journal Of Statistical Mechanics-Theory And Experiment . P02007-1-P02007-8. |
Publicador |
Institute of Physics |
Relação |
http://www.iop.org/EJ/article/1742-5468/2009/02/P02007/jstat9_02_p02007.pdf?request-id=1307567a-7d08-4dea-ad54-211165644994 http://eprints.iisc.ernet.in/19561/ |
Palavras-Chave | #Centre for High Energy Physics #Physics |
Tipo |
Journal Article PeerReviewed |