913 resultados para Bis(2-{pyrid-2-yl}ethyl)amine
Resumo:
In the structure of the title salt 2C7H10N+.C8H2Cl2O4(2-) .H2O the two benzylaminium anions have different conformations, one being essentially planar the other having the side-chain rotated out of the benzene plane (minimum ring to side-chain C-C-C-N torsion angles = -3.6(6) and 50.1(5)\%, respectively). In the 4,5-dichlorophthalate dianion the carboxyl groups make ihedral angles of 23.0(2) and 76.5(2)\% with the benzene ring. Aminium N-H...O and water O-H...O hydrogen-bonding associations with carboxyl O-atom acceptors give a two-dimensional duplex sheet structure which extends along the (011) plane. Weak pi-pi interactions are also present between the benzene ring and one of the cation rings [minimum ring centroid separation = 3.749(3)Ang.
Resumo:
In the structure of the title compound C14H9Cl3I2, which is the p-iodophenyl analogue of the insecticide DDT [1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane], isomorphism between the two compounds has been confirmed. In the molecule the dihedral angle between the planes of the two phenyl rings is 65.8(4)deg. which compares with 64.7(7)deg. in DDT.
Resumo:
In the structure of the title compound C22H27Cl302, which is the p-butoxyphenyl analogue of the insecticidally active p-methoxyphenyl compound methoxychlor, the dihedral angle between the two phenyl rings is 79.61(11)deg. Present also in the structure is an intramolecular aromatic C-H...Cl interaction [3.361(2)Ang].
Resumo:
In the title compound, C18H19Cl3O2, which is the 4-ethoxyphenyl analogue of the insecticidally active 4-methoxyphenyl compound methoxychlor, the dihedral angle between the two benzene rings is 60.38(13)deg. An intramolecular aromatic C-H...Cl interaction is present.
Resumo:
In the structure of the title compound C17H16Br2O3, which is a restricted commercial acaricide (common name bromopropylate), has two independent and conformationally similar molecules in the asymmetric unit [dihedral angle between the planes of the two phenyl rings in each, 68.7(4) and 77.4(5)deg]. The C-atoms of the isopropyl group of one of the molecules are disordered over two sites with occupancies of 0.638 and 0.362. Minor non-merohedral twinning was also present in the crystal. Intermolecular hydrogen-bonding interactions involving the hydroxy groups and carboxyl O-atom acceptors give separate centrosymmetric homodimers through cyclic hydrogen-bonding motifs [graph set R2/2(10)].
Resumo:
o-Bromo(propa-1,2-dien-1-yl)arenes exhibit novel and orthogonal reactivity under Pd catalysis in the presence of secondary amines to form enamines (concerted Pd insertion, intramolecular carbopalladation, and terminative Buchwald–Hartwig coupling) and of amides to form indoles (addition, Buchwald–Hartwig cyclization, and loss of the acetyl group). The substrates for these reactions can be accessed in a reliable and highly selective two-step process from 2-bromoaryl bromides.
Resumo:
Aromatic radicals form in a variety of reacting gas-phase systems, where their molecular weight growth reactions with unsaturated hydrocarbons are of considerable importance. We have investigated the ion-molecule reaction of the aromatic distonic N-methyl-pyridinium-4-yl (NMP) radical cation with 2-butyne (CH3C CCH3) using ion trap mass spectrometry. Comparison is made to high-level ab initio energy surfaces for the reaction of NMP and for the neutral phenyl radical system. The NMP radical cation reacts rapidly with 2-butyne at ambient temperature, due to the apparent absence of any barrier. The activated vinyl radical adduct predominantly dissociates via loss of a H atom, with lesser amounts of CH3 loss. High-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry allows us to identify small quantities of the collisionally deactivated reaction adduct. Statistical reaction rate theory calculations (master equation/RRKM theory) on the NMP + 2-butyne system support our experimental findings, and indicate a mechanism that predominantly involves an allylic resonance-stabilized radical formed via H atom shuttling between the aromatic ring and the C-4 side-chain, followed by cyclization and/or low-energy H atom beta-scission reactions. A similar mechanism is demonstrated for the neutral phenyl radical (Ph center dot)+2-butyne reaction, forming products that include 3-methylindene. The collisionally deactivated reaction adduct is predicted to be quenched in the form of a resonance-stabilized methylphenylallyl radical. Experiments using a 2,5-dichloro substituted methyl-pyridiniumyl radical cation revealed that in this case CH3 loss from the 2-butyne adduct is favoured over H atom loss, verifying the key role of ortho H atoms, and the shuttling mechanism, in the reactions of aromatic radicals with alkynes. As well as being useful phenyl radical analogues, pyridiniumyl radical cations may form in the ionosphere of Titan, where they could undergo rapid molecular weight growth reactions to yield polycyclic aromatic nitrogen hydrocarbons (PANHs).
Resumo:
In the title compound, [K2(C7H3Cl2O2)2(H2O)]n, the potassium salt of 2,4-dichlorobenzoic acid, the repeating unit in the polymeric structure consists of two identical irregular KO6Cl complex units related by twofold rotational symmetry, linked by a bridging water molecule lying on the twofold axis. The coordination polyhedron about each K+ comprises a carboxyl O-atom and a Cl-atom donor from a bidentate chelate ligand interaction, four O-atom donors from a doubly bridging bidentate carboxyl (O,O')-chelate interaction and the water molecule. A two-dimensional layered coordination polymer structure lying parallel to (100) is generated through a series of conjoined cyclic bridges between K centres and is stabilized by water O-H...O(carboxyl) hydrogen-bonding interactions.
Resumo:
Purpose To investigate the effects of the relatively selective GABAAOr receptor antagonist (1,2,5,6-tetrahydropyridin-4-yl) methylphosphinic acid (TPMPA) on form-deprivation myopia (FDM) in guinea pigs. Methods A diffuser was applied monocularly to 30 guinea pigs from day 10 to 21. The animals were randomized to one of five treatment groups. The deprived eye received daily sub-conjunctival injections of 100 μl TPMPA at a concentration of (i) 0.03 %, ( ii) 0.3 %, or (iii) 1 %, a fourth group (iv) received saline injections, and another (v) no injections. The fellow eye was left untreated. An additional group received no treatment to either eye. Prior to and at the end of the treatment period, refraction and ocular biometry were performed. Results Visual deprivation produced relative myopia in all groups (treated versus untreated eyes, P < 0.05). The amount of myopia was significantly affected by the drug treatment (one-way ANOVA, P < 0.0001); myopia was less in deprived eyes receiving either 0.3 % or 1 % TPMPA (saline = −4.38 ± 0.57D, 0.3 % TPMPA = −3.00 ± 0.48D, P < 0.01; 1 % TPMPA = −0.88 ± 0.51D, P < 0.001). The degree of axial elongation was correspondingly less (saline = 0.13 ± 0.02 mm, 0.3 % TPMPA = 0.09 ± 0.01 mm, P < 0.01, 1 % TPMPA = 0.02 ± 0.01 mm, P < 0.001) as was the VC elongation (saline = 0.08 ± 0.01 mm, 0.3 % TPMPA = 0.05 ± 0.01 mm, P < 0.01, 1 % TPMPA = 0.01 ± 0.01 mm; P < 0.001). ACD and LT were not affected (one-way ANOVA, P > 0.05). One percent TPMPA was more effective at inhibiting myopia than 0.3 % (P < 0.01), and 0.03 % did not appreciably inhibit the myopia (0.03 % TPMPA versus saline, P > 0.05). Conclusions Sub-conjunctival injections of TPMPA inhibit FDM in guinea pig models in a dose-dependent manner.
Resumo:
The structures of the 1:1 co-crystalline adduct C8H6BrN3S . C7H5NO4 (I) and the salt C8H7BrN3S+ C7H3N2O7- (II) from the interaction of 5-(4-bromophenyl)-1,3,4-thiadiazol-2-amine with 4-nitrobenzoic acid and 3,5-dinitrosalicylic acid, respectively, have been determined. The primary inter-species association in both (I) and (II) is through duplex R2/2(8) (N-H...O/O-H...O) or (N-H...O/N-H...O) hydrogen bonds, respectively, giving heterodimers. In (II), these are close to planar [dihedral angles between the thiadiazole ring and the two phenyl rings are 2.1(3)deg. (intra) and 9.8(2)deg. (inter)], while in (I) these angles are 22.11(15) and 26.08(18)deg., respectively. In the crystal of (I), the heterodimers are extended into a one-dimensional chain along b through an amine N-...N(thiadiazole) hydrogen bond but in (II), a centrosymmetric cyclic heterotetramer structure is generated through N-H...O hydrogen bonds to phenol and nitro O-atom acceptors and features, together with the primary R2/2(8) interaction, conjoined R4/6(12), R2/1(6) and S(6) ring motifs. Also present in (I) are pi--pi interactions between thiadiazole rings [minimum ring centroid separation, 3.4624(16)deg.] as well as short Br...O(nitro) interactions in both (I) and (II) [3.296(3)A and 3.104(3)A, respectively].
Resumo:
The monoanionic ligand 1,1,3,3 tetracyano-2 ethoxypropenide (tcnoet) is reported with its Cu(II)–bpy complex of formula [Cu2(µ-tcnoet)2(tcnoet)2(bpy)2]. The structure has been determined using X-ray diffraction and features an alternating chain with bridging tcnoet ligands. One ligand acts as a bidentate, dinucleating ligand with one short Cu–N and one medium Cu–N bond, whereas the other tcnoet is largely monodentate, albeit with a very weak interdimer Cu–N bond. Despite the arrangement in dinuclear units, further arranged into linear chains through the non-bridging tcnoet ligand, the compound shows no significant magnetic exchange, as deduced from magnetic susceptibility down to 4 K. Ligand-field, IR and EPR spectra in the solid state and in frozen solution are reported and are consistent with the overall structure.
Resumo:
The title compound, C16H18N2O2, is an important precursor in the synthesis of 1,2,3,4-tetrahydropyrazinoindoles, which show excellent antihistamine, antihypertensive and central nervous system depressant properties. The carbethoxy group attached to C2 and the planar cyanoethyl group attached to N1 make dihedral angles of 11.0(4) and 75.0(3)degrees, respectively, with the mean plane of the indole ring, The C-C=N chain is linear with a bond angle of 179.3 (4)degrees.
Resumo:
In the title compound, C23H15ClFNOS, the isoquinoline system and the 4-chloro-3-fluorophenyl ring are aligned at 80.4 (1)degrees. The dihedral angle between the isoquinoline system and the pendant (unsubstituted) phenyl ring is 19.91 (1)degrees.
Resumo:
Dialkyl (3-aryl-l,2,4-oxadiazol-5-yl)phosphonate6sa -h have been obtained by 1,3-dipolar cycloaddition of arenenitrile oxides 5a-f to dialkyl phosphorocyanidates (4a and 4b) in yields ranging between 30% and 58%. A standardized method for obtaining cyanidates 4a and 4b has been established. The diethyl thiophosphorocyanidate (4c) is less reactive than 4a and 4b, only the 3-(4'-nitrophenyl) derivative 6i being obtainable. While the IR and NMFt spectra of 6a-i were unexceptional, their UV spectra showed evidence of conjugative interaction in high degrees between the phosphonate and heterocyclic moieties as well as a varying conjugative interaction between the heterocyclic and aryl moieties. The oxadiazoles 6a-h are thermally labile and yield trialkyl phosphates 7 as the only identifiable products. A mechanism based on the intermediacy of monomeric alkyl metaphosphate 11 in the formation of trialkyl phosphate was postulated, and supportive evidence in the form of trapping the metaphosphate with acetophenone has been obtained.