929 resultados para Bayes theorem
A robust Bayesian approach to null intercept measurement error model with application to dental data
Resumo:
Measurement error models often arise in epidemiological and clinical research. Usually, in this set up it is assumed that the latent variable has a normal distribution. However, the normality assumption may not be always correct. Skew-normal/independent distribution is a class of asymmetric thick-tailed distributions which includes the Skew-normal distribution as a special case. In this paper, we explore the use of skew-normal/independent distribution as a robust alternative to null intercept measurement error model under a Bayesian paradigm. We assume that the random errors and the unobserved value of the covariate (latent variable) follows jointly a skew-normal/independent distribution, providing an appealing robust alternative to the routine use of symmetric normal distribution in this type of model. Specific distributions examined include univariate and multivariate versions of the skew-normal distribution, the skew-t distributions, the skew-slash distributions and the skew contaminated normal distributions. The methods developed is illustrated using a real data set from a dental clinical trial. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The main purpose of this thesis project is to prediction of symptom severity and cause in data from test battery of the Parkinson’s disease patient, which is based on data mining. The collection of the data is from test battery on a hand in computer. We use the Chi-Square method and check which variables are important and which are not important. Then we apply different data mining techniques on our normalize data and check which technique or method gives good results.The implementation of this thesis is in WEKA. We normalize our data and then apply different methods on this data. The methods which we used are Naïve Bayes, CART and KNN. We draw the Bland Altman and Spearman’s Correlation for checking the final results and prediction of data. The Bland Altman tells how the percentage of our confident level in this data is correct and Spearman’s Correlation tells us our relationship is strong. On the basis of results and analysis we see all three methods give nearly same results. But if we see our CART (J48 Decision Tree) it gives good result of under predicted and over predicted values that’s lies between -2 to +2. The correlation between the Actual and Predicted values is 0,794in CART. Cause gives the better percentage classification result then disability because it can use two classes.
Resumo:
This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. Chaos theory, provides valuable qualitative and quantitative tools to decide on the predictability of a chaotic system. Quantitative measurements based on Chaos theory, are used, to decide a-priori whether a time series, or a portion of a time series is predictable, while Chaos theory based qualitative tools are used to provide further observations and analysis on the predictability, in cases where measurements provide negative answers. Phase space reconstruction is achieved by time delay embedding resulting in multiple embedded vectors. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens‘ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.
Resumo:
The aim of this thesis is to investigate computerized voice assessment methods to classify between the normal and Dysarthric speech signals. In this proposed system, computerized assessment methods equipped with signal processing and artificial intelligence techniques have been introduced. The sentences used for the measurement of inter-stress intervals (ISI) were read by each subject. These sentences were computed for comparisons between normal and impaired voice. Band pass filter has been used for the preprocessing of speech samples. Speech segmentation is performed using signal energy and spectral centroid to separate voiced and unvoiced areas in speech signal. Acoustic features are extracted from the LPC model and speech segments from each audio signal to find the anomalies. The speech features which have been assessed for classification are Energy Entropy, Zero crossing rate (ZCR), Spectral-Centroid, Mean Fundamental-Frequency (Meanf0), Jitter (RAP), Jitter (PPQ), and Shimmer (APQ). Naïve Bayes (NB) has been used for speech classification. For speech test-1 and test-2, 72% and 80% accuracies of classification between healthy and impaired speech samples have been achieved respectively using the NB. For speech test-3, 64% correct classification is achieved using the NB. The results direct the possibility of speech impairment classification in PD patients based on the clinical rating scale.
Resumo:
In this paper we describe our system for automatically extracting "correct" programs from proofs using a development of the Curry-Howard process. Although program extraction has been developed by many authors, our system has a number of novel features designed to make it very easy to use and as close as possible to ordinary mathematical terminology and practice. These features include 1. the use of Henkin's technique to reduce higher-order logic to many-sorted (first-order) logic; 2. the free use of new rules for induction subject to certain conditions; 3. the extensive use of previously programmed (total, recursive) functions; 4. the use of templates to make the reasoning much closer to normal mathematical proofs and 5. a conceptual distinction between the computational type theory (for representing programs)and the logical type theory (for reasoning about programs). As an example of our system we give a constructive proof of the well known theorem that every graph of even parity, which is non-trivial in the sense that it does not consist of isolated vertices, has a cycle. Given such a graph as input, the extracted program produces a cycle as promised.
Resumo:
In this paper we describe a new protocol that we call the Curry-Howard protocol between a theory and the programs extracted from it. This protocol leads to the expansion of the theory and the production of more powerful programs. The methodology we use for automatically extracting “correct” programs from proofs is a development of the well-known Curry-Howard process. Program extraction has been developed by many authors, but our presentation is ultimately aimed at a practical, usable system and has a number of novel features. These include 1. a very simple and natural mimicking of ordinary mathematical practice and likewise the use of established computer programs when we obtain programs from formal proofs, and 2. a conceptual distinction between programs on the one hand, and proofs of theorems that yield programs on the other. An implementation of our methodology is the Fred system. As an example of our protocol we describe a constructive proof of the well-known theorem that every graph of even parity can be decomposed into a list of disjoint cycles. Given such a graph as input, the extracted program produces a list of the (non-trivial) disjoint cycles as promised.
Resumo:
The paper investigates which of Shannon’s measures (entropy, conditional entropy, mutual information) is the right one for the task of quantifying information flow in a programming language. We examine earlier relevant contributions from Denning, McLean and Gray and we propose and motivate a specific quantitative definition of information flow. We prove results relating equivalence relations, interference of program variables, independence of random variables and the flow of confidential information. Finally, we show how, in our setting, Shannon’s Perfect Secrecy theorem provides a sufficient condition to determine whether a program leaks confidential information.
Resumo:
Este trabalho compõe-se de duas partes. A primeira parte propõe-se a apresentar um estudo e um programa computacional para a análise não linear geométrica de treliças planas com propriedades: viscoelásticas. Na segunda parte, tem-se o estudo e um programa sobre pórticos planos com propriedades viscoelásticas, usando o modelo reológico standard e o dado pelo CEB. Leva-se em consideração o efeito de temperatura e retração nesta análise. Estende-se o trabalho sobre pórtico para o estudo sobre vigas mistas, levando em consideração a mudança da linha neutra. A formulação está baseada no método dos elementos finitos para grandes deformações, particularizada para treliça e pórtico. É feita a descrição de ambos os programas e rodados diversos exemplos.
Resumo:
Este trabalho descreve a especificação e implementação do protótipo Assistente de Feedback que ajuda os usuários a ajustarem os parâmetros do serviço de filtragem de mensagens vindas do correio eletrônico de sistemas como o Direto. O Assistente de Feedback é instalado no computador do usuário do Direto para monitorar suas preferências representadas pelas ações aplicadas nas mensagens do correio eletrônico. O trabalho apresenta, ainda, uma revisão bibliográfica sobre os conceitos gerais de probabilidades, redes Bayesianas e classificadores. Procura-se descrever as características gerais dos classificadores, em especial o Naive Bayes, sua lógica e seu desempenho comparado a outros classificadores. São abordados, também, conceitos relacionados ao modelo de perfil de usuário e o ambiente Direto. O Naive Bayes torna-se atraente para ser utilizado no Assistente de Feedback por apresentar bom desempenho sobre os demais classificadores e por ser eficiente na predição, quando os atributos são independentes entre si. O Assistente de Feedback utiliza um classificador Naive Bayes para predizer as preferências por intermédio das ações do usuário. Utiliza, também, pesos que representarão a satisfação do usuário para os termos extraídos do corpo da mensagem. Esses pesos são associados às ações do usuário para estimar os termos mais interessantes e menos interessantes, pelo valor de suas médias finais. Quando o usuário desejar alterar os filtros de mensagens do Direto, ele solicita ao Assistente de Feedback sugestões para possíveis exclusões dos termos menos interessantes e as possíveis inclusões dos termos mais interessantes. O protótipo é testado utilizando dois métodos de avaliação para medir o grau de precisão e o desempenho do Assistente de Feedback. Os resultados obtidos na avaliação de precisão apresentam valores satisfatórios, considerando o uso de cinco classes pelo classificador do Assistente de Feedback. Os resultados dos testes de desempenho permitem observar que, se forem utilizadas máquinas com configurações mais atualizadas, os usuários conseguirão receber sugestões com tempo de respostas mais toleráveis.
Resumo:
In this paper we consider strictly convex monotone continuous complete preorderings on R+n that are locally representable by a concave utility function. By Alexandroff 's (1939) theorem, this function is twice dífferentiable almost everywhere. We show that if the bordered hessian determinant of a concave utility representation vanishes on a null set. Then demand is countably rectifiable, that is, except for a null set of bundles, it is a countable union of c1 manifolds. This property of consumer demand is enough to guarantee that the equilibrium prices of apure exchange economy will be locally unique, for almost every endowment. We give an example of an economy satisfying these conditions but not the Katzner (1968) - Debreu (1970, 1972) smoothness conditions.
Resumo:
Several works in the shopping-time and in the human-capital literature, due to the nonconcavity of the underlying Hamiltonian, use Örst-order conditions in dynamic optimization to characterize necessity, but not su¢ ciency, in intertemporal problems. In this work I choose one paper in each one of these two areas and show that optimality can be characterized by means of a simple aplication of Arrowís (1968) su¢ ciency theorem.
Resumo:
On using McKenzie’s taxonomy of optimal accumulation in the longrun, we report a “uniform turnpike” theorem of the third kind in a model original to Robinson, Solow and Srinivasan (RSS), and further studied by Stiglitz. Our results are presented in the undiscounted, discrete-time setting emphasized in the recent work of Khan-Mitra, and they rely on the importance of strictly concave felicity functions, or alternatively, on the value of a “marginal rate of transformation”, ξσ, from one period to the next not being unity. Our results, despite their specificity, contribute to the methodology of intertemporal optimization theory, as developed in economics by Ramsey, von Neumann and their followers.
Resumo:
The most widely used updating rule for non-additive probalities is the Dempster-Schafer rule. Schmeidles and Gilboa have developed a model of decision making under uncertainty based on non-additive probabilities, and in their paper “Updating Ambiguos Beliefs” they justify the Dempster-Schafer rule based on a maximum likelihood procedure. This note shows in the context of Schmeidler-Gilboa preferences under uncertainty, that the Dempster-Schafer rule is in general not ex-ante optimal. This contrasts with Brown’s result that Bayes’ rule is ex-ante optimal for standard Savage preferences with additive probabilities.
Resumo:
This artic/e applies a theorem of Nash equilibrium under uncertainty (Dow & Werlang, 1994) to the classic Coumot model of oligopolistic competition. It shows, in particular, how one can map all Coumot equilibrium (which includes the monopoly and the null solutions) with only a function of uncertainty aversion coefficients of producers. The effect of variations in these parameters over the equilibrium quantities are studied, also assuming exogenous increases in the number of matching firms in the game. The Cournot solutions under uncertainty are compared with the monopolistic one. It shows principally that there is an uncertainty aversion level in the industry such that every aversion coefficient beyond it induces firms to produce an aggregate output smaller than the monopoly output. At the end of the artic/e equilibrium solutions are specialized for Linear Demand and for Coumot duopoly. Equilibrium analysis in the symmetric case allows to identify the uncertainty aversion coefficient for the whole industry as a proportional lack of information cost which would be conveyed by market price in the perfect competition case (Lerner Index).