Local concavifiability of preferences and determinacy of equilibrium
Data(s) |
13/05/2008
13/05/2008
01/05/1991
|
---|---|
Resumo |
In this paper we consider strictly convex monotone continuous complete preorderings on R+n that are locally representable by a concave utility function. By Alexandroff 's (1939) theorem, this function is twice dífferentiable almost everywhere. We show that if the bordered hessian determinant of a concave utility representation vanishes on a null set. Then demand is countably rectifiable, that is, except for a null set of bundles, it is a countable union of c1 manifolds. This property of consumer demand is enough to guarantee that the equilibrium prices of apure exchange economy will be locally unique, for almost every endowment. We give an example of an economy satisfying these conditions but not the Katzner (1968) - Debreu (1970, 1972) smoothness conditions. |
Identificador |
0104-8910 |
Idioma(s) |
en_US |
Publicador |
Fundação Getulio Vargas. Escola de Pós-graduação em Economia |
Relação |
Ensaios Econômicos;174 |
Direitos |
Todo cuidado foi dispensado para respeitar os direitos autorais deste trabalho. Entretanto, caso esta obra aqui depositada seja protegida por direitos autorais externos a esta instituição, contamos com a compreensão do autor e solicitamos que o mesmo faça contato através do Fale Conosco para que possamos tomar as providências cabíveis. |
Palavras-Chave | #Concavifiability of preferences #Rectifiability of demand #Local uniqueness of equilibrium prices #Equilíbrio econômico #Consumidores - Preferência #Economia |
Tipo |
Working Paper |