953 resultados para virus antibody


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A surface plasmon resonance biosensor has been used to determine antibody activity in serum. As a model system, the interaction of mouse IgG and sheep anti-mouse IgG polyclonal antibody was investigated in real time. The factors, including pH value, ionic strength, protein concentration, influencing electrostatic adsorption of mouse IgG protein onto carboxylated dextran-coated sensor chip surface, were studied. The procedures of mouse IgG protein immobilization and immune reaction were monitored in real time. The regeneration effect using the different elution reagents was also investigated. The same mouse IgG immobilized surface can be used for 100 cycles of binding and elution with only 0.38% loss per regeneration in reactivity. The results show that the surface plasmon resonance biosensor is a rapid, simple, sensitive, accurate and reliable detection technique for real-time immunoassay of antibody activity. The assay allows antibodies to be detected and studied in their native form without any purification. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three selenium-containing catalytic antibodies mHB4, mHB5 and mHB7 which acted as mimics of cytosolic glutathione peroxidase(cGPX), were prepared by chemically introducing selenium into monoclonal antibodies HB4, HB5 and HB7. HB4. HB5 and HB7 were raised against a GSH derivative GSH-S-DNP dibenzyl ester, The cGPX activity of mHB4, mHB5, mHB7 were 170, 1 867, 32 U/mu mol, respectively. The cGPX activity of mHB5 was 0, 32 fold of natural rabbit liver cGPX and 1. 51 fold of m4A4. About two atoms of selenium existed in each of mHB5 molecule determined by inductively-coupled plasma/mass spectroscopy (ICP-MS), The optimal activity of mHB5 was at between pH 8. 4 and 8, 8, The reaction catalyzed by mHB5 involved a Ping-Pong mechanism. At pH 7. 0 and 37 degreesC, the apparent second-order rate constants for reaction of mHB5 with H2O2 and t-ROOH were as followed: k(+1) (H2O2) = 9. 71 x 10(6) L/(mol min), k(+1)(t-ROOH) = 5. 99 x 10(5) L/(mol.min). Rate accelerations (k(cat)/K-m/k(uncat)) 9. 8 x 10(6) and 3.7 x 10(5) fold those of the uncatalytic reaction were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosensor based on surface plasmon resonance(SPR) technology is a very useful tool to study the interaction between biomolecles. The main advantages of this technique is to "visualize" macromolecular interactions directly in real time, and in a label-free mode rather than indirect methods like enzyme-linked immunosorbent assays (ELISAs). We immobilize human serum albumin (HSA) to the carboxymethyldextran-modified sensor chip surface covalently to detect the activity of anti-HSA in serum, and regenerate the surface with .1 mol/L phosphoric acid. The results show that SPR biosensor can detect the activity of anti-HSA in real-time quickly and the sensor chip can be used over 100 cycles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

By screening the phage-displayed human single chain antibody library, we have got the specific single chain antibody bound to GSH-S-DNP butyl ester as the hapten. The tertiary structure of the protein was analyzed with the aid of computer, and the results showed the CDR3 region located on the surface of the antibody. The soluble antibody was expressed in E. coli. and the active site serine was converted into selenocysteine with the chemical modifying method, which resulted in the catalytic antibody with GPx activity of 80 U/mu mol. Furthermore, the same Ping-Pong mechanism as the natural GPx was observed when the kinetic behavior of the antibody was studied.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combination of affinity extraction procedures with mass spectrometric analyses is termed affinity-directed mass spectrometry, a technique that has gained broad interest in immunology and is extended here with several improvements from methods used in previous studies. A monoclonal antibody was immobilized on a nitrocellulose (NC) membrane, allowing the corresponding antigen to be selectively captured from a complex solution for analysis by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS). This method was also used to rapidly determine the approximate binding region responsible for the antibody/antigen interaction. The tryptic fragments of antigen protein in buffer were applied to the antibody immobilized on NC film and allowed to interact. The NC film was then washed to remove salts and other unbound components, and subjected to analysis by MALDI-TOFMS. Using interferon-alpha (2a) and anti-interferon-alpha (2a) monoclonal antibody IgG as a model system, we successfully extracted the antigen protein and determined the approximate binding region for the antigen/antibody interaction (i.e., the tryptic fragment responsible). Copyright (C) 2001 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antibody was covalently immobilized by amine coupling method to gold surfaces modified with a self-assembled monolayer of thioctic acid. The electrochemical measurements of cyclic voltammetry and impedance spectroscopy showed that the hexacyanoferrate redox reactions on the gold surface were blocked due to the procedures of self-assembly of thioctic acid and antibody immobilization. The binding of a specific antigen to antibody recognition layer could be detected by measurements of the impedance change. A new amplification strategy was introduced for improving the sensitivity of impedance measurements using biotin labeled protein- streptavidin network complex. This amplification strategy is based on the construction of a molecular complex between streptavidin and biotin labeled protein. This complex can be formed in a cross-linking network of molecules so that the amplification of response signal will be realized due to the big molecular size of complex. The results show that this amplification strategy causes dramatic improvement of the detection sensitivity of hIgG and has good correlation for detection of hIgG in the range of 2-10 mug/ml. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conversion of thyroxine (T-4) to 3,5,3'-triiodothyronine is an essential first step in controlling thyroid hormone action. Type I deiodinase (DI) can catalyze the conversion to produce the bulk of serum 3,5,3'-triiodothyronine. Acting as a mimic of DI, a selenium-containing catalytic antibody (Se-4C5) prepared by converting the serine residues of monoclonal antibody 4C5 raised against T4 into selenocysteines, can catalyze the deiodination of T4 with dithiothreitol (DTT) as cosubstrate. The mimic enzyme Se-4C5 exhibited a much greater deiodinase activity than model compound ebselen and another selenium-containing antibody Se-Hp4 against GSH. The coupling of selenocysteine with the combining pocket of antibody 4C5 endowed Se-4C5 with enzymatic activity. To probe the catalytic mechanism of the catalytic antibody, detailed kinetic studies were carried out in this paper. Investigations into the deiodinative reaction revealed the relationship between the initial velocity and substrate concentration. The characteristic parallel Dalziel plots demonstrated that Se-4C5-catalyzed reaction mechanism was ping-pong one, involving at least one covalent enzyme intermediate. The kinetic properties of the catalytic antibody were similar to those of DI, with K-m values for T-4 and DTT of approximately 0.8 muM and 1.8 muM, respectively, and a V-m value of 270 pmol per mg of protein per min. The activity could be sensitively inhibited by 6-propyl-2-thiouracil (PTU) with a K-i value of similar to 120 muM at 2.0 muM T-4 concentration. The PTU inhibition was progressively alleviated with the increasing concentration of added DTT, revealing that PTU was a competitive inhibitor for DTT.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Acting as a mimic of type I deiodinase (DI), a selenium-containing catalytic antibody (Se-4C5) prepared by converting the serine residues of monoclonal antibody 4C5 raised against thyroxine (T-4) into selenocysteines, can catalyze the deiodination of T-4 to 3,5,3'-triiodothyronine (T-3) with dithiothreitol (DTT) as cosubstrate. Investigations into the deiodinative reaction by Se-4C5 revealed the relationship between the initial velocity and substrate concentration was subjected to Michaelis-Menten equation and the reaction mechanism was ping-pong one. The kinetic properties of the catalytic antibody were a little similar to those of DI, with K-m values for T-4 and DTT of approximately 0.8 muM and 1.8 mM, respectively, and V-m value of 270 pmol per mg protein per min. The activity could be sensitively inhibited by PTU with a K-i value of approximately 120 muM at 2.0 muM of T-4 concentration, revealing that PTU was a competitive inhibitor for DTT, (C) 2001 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A selenium-containing catalytic antibody (Se-4A4), prepared by converting reactive serine residues of a monoclonal antibody (4A4) raised against a GSH derivative into selenocysteines, acts as a mimic of cytosolic glutathione peroxidase (cGPX). To clarify the mechanism of action of this catalytic antibody, detailed studies on kinetic behaviour and biological activity were carried out. A rate of acceleration (k(cat)/K-m/k(uncat)) 10(7)-fold that of the uncatalytic reaction is observed. Under similar conditions, the turnover number (k(cat)) of Se-4A4 is 42% of that of the natural rabbit liver cGPX. The Se-4A4 reaction involves a Ping Pong mechanism, which is the same as that of the natural cGPX. The selenocysteine residue is located in the binding site of the antibody and is shown to be crucial for this activity. Of the thiol compounds tested, only GSH is able to serve as substrate for Se-4A4. It was demonstrated, using the free-radical-damage system (hypoxanthine/xanthine oxidase) of cardiac mitochondria, that Se-4A4 can protect mitochondria from free-radical damage at least 10(4)-fold more effectively than the natural cGPX.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The worldwide shrimp culture is beset with diseases mainly caused by white spot syndrome virus (WSSV) and suffered huge economic losses, which bring out an urgent need to develop the novel strategies to better protect shrimps against WSSV. In the present study, CpG-rich plasmid pUC57-CpG, plasmid pUC57 and PBS were employed to pretreat shrimps comparatively to evaluate the protective effects of CpG ODNs on shrimps against WSSV. The survival rates, WSSV copy numbers, and antiviral associated factors (Dicer, Argonaute, STAT and ROS) were detected in Litopenaeus vannamei. There were higher survival proportion, lower WSSV copy numbers, and higher mRNA expression of Dicer and STAT in pUC57-CpG-pretreatment shrimps than those in pUC57- and PBS-pretreatment shrimps after WSSV infection. The Argonaute mRNA expression in pUC57-CpG-, pUC57- and PBS-pretreatment shrimps after WSSV infection was significantly higher than that of shrimps post PBS stimulation on the first day. The ROS levels in pUC57-CpG-pretreatment shrimps post secondary stimulation of PBS were significantly higher than those post WSSV infection on the first day. These results together demonstrated that pUC57-CpG induced partial protective immunity in shrimps against WSSV via intermediation of virus replication indirectly and could be used as a potential candidate in the development of therapeutic agents for disease control of WSSV in L. vannamei. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White spot syndrome virus (WSSV) is a major shrimp pathogen that has a widespread negative affect on shrimp production in Asia and the Americas. It is known that WSSV infects shrimp cells through viral attachment proteins (VAP) that bind with shrimp cell receptors. However, the identity of both WSSV VAP and shrimp cell receptors remains unclear. We used digoxigenin (DIG)labeled shrimp hemocyte and gill cell membranes to bind to WSSV proteins immobilized on nitrocellulose membranes, and 4 putative WSSV VAP (37 kDa, 39 kDa and 2 above 97 kDa) were identified. Mass spectrometric analysis identified the 37 kDa putative VAP as the product of WSSV gene VP281.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

White spot syndrome virus (WSSV) was specifically detected by PCR in Penaeus merguiensis hemocytes, hemolymph and plasma. This suggested a close association between the shrimp hemolymph and the virus. Three types of hemocyte from shrimp were isolated using flow cytometry. Dynamic changes of the hemocyte subpopulations in P. merguiensis at different times after infection were observed, indicating that the WSSV infection selectively affected specific subpopulations. Immunofluorescence assay (IFA) and a Wright-Giemsa double staining study of hemocyte types further confirmed the cellular localization of the virus in the infected hemocytes. Electron microscopy revealed virus particles in both vacuoles and the nucleus of the semigranular cells (SGC), as well as in the vacuoles of the granular cells (GC). However, no virus could be detected in the hyaline cells (HC). Our results suggest that the virus infects 2 types of shrimp hemocytes-GCs and SGCs. The SGC type contains higher virus loads and exhibits faster infection rates, and is apparently more susceptible to WSSV infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MicroRNAs (miRNA) that are around 22 nucleotides long non-protein-coding RNAs, play key regulatory roles in plants. Recent research findings show that miRNAs are involved in plant defense and viral offense systems. Advances in understanding the mechanism of miRNA biogenesis and evolution are useful for elucidating the complicated roles they play in viral infection networks. In this paper a brief summary of evolution of plant anti-virus defense is given and the function of miRNAs involved in plant-virus competition is highlighted. It is believed that miRNAs have several advantages over homology-dependent and siRNA-mediated gene silencing when they are applied biotechnologically to promote plant anti-virus defense. miRNA-mediated anti-virus pathway is an ancient mechanism with a promising future. However, using miRNAs as a powerful anti-virus tool will be better realized only if miRNA genomics and functions in plant viral infection are fully understood.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Zhikong Scallop, Chlamys farreri, is one of the most Important bivalve mollusks cultured in northern China However, mass mortality of the cultured C farreri has posed a serious threat to the maricultural Industry in recent years. Acute Viral Necrobiotic Virus (AVNV) is believed as an important etiological agent causing the scallop mass mortalities To understand the mechanism behind the AVNV associated scallop disease and mortality, we assessed the physiological and immune responses of C farreri to the virus infection using oxygen consumption rate, ammonium-nitrogen excretion rate, hemocyte copper, zinc superoxide dismutase gene expression, and plasma superoxide dismutase activity and alkaline phosphatase activity as indicators Scallops challenged by AVNV at 25 C developed typical disease signs 2 days after virus injection Before the disease manifested, scallop oxygen consumption and NH4+-N excretion rates rose and then fell back. Real-time PCR revealed that the hemocyte cytosol Cu, Zn SOD gene expression was upregulated followed by recovery The plasma SOD activity, however, augmented consistently following virus injection Moreover, plasma AKP activity first lowered and then elevated gradually to the highest level at 24 h post virus injection Scallops challenged by AVNV at 17 degrees C neither developed notable disease nor showed obvious responses that could be associated with the virus infection. While the results suggested a correlation between the elevated seawater temperature and the AVNV infection associated C farreri mortalities, they also indicated that the viral infection provoked multiple physiological and immune responses in the host scallops (C) 2010 Elsevier Ltd All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We used microarray technology to study differentially expressed genes in white spot syndrome virus (WSSV)-infected shrimp. A total of 3136 cDNA targets, including 1578 unique genes from a cephalothorax cDNA library and 1536 cDNA clones from reverse and forward suppression subtractive hybridization (SSH) libraries of Fenneropenaeus chinensis, plus 14 negative and 8 blank control clones, were spotted onto a 18 x 18 mm area of NH2-modified glass slides. Gene expression patterns in the cephalothorax of shrimp at 6 h after WSSV injection and moribund shrimp naturally infected by WSSV were analyzed. A total of 105 elements on the arrays showed a similar regulation pattern in artificially infected shrimp and naturally infected moribund shrimp; parts of the results were confirmed by semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR). The up-regulated expression of immune-related genes, including heat shock proteins (HSP70 and HSP90), trehalose-phosphate synthase (TPS), ubiquitin C, and so forth, were observed when shrimp were challenged with WSSV. Genes including myosin LC2, ATP synthase A chain, and arginine kinase were found to be down-regulated after WSSV infection. The expression of housekeeping genes such as actin, elongation factor, and tubulin is not stable, and so these genes are not suitable as internal standards for semiquantitative RT-PCR when shrimp are challenged by WSSV. As a substitute, we found that triosephosphate isomerase (TPI) was an ideal candidate of interstandards in this situation.