972 resultados para thermomagnetic convection


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper a computer simulation tool capable of modelling multi-physics processes in complex geometry has been developed and applied to the casting process. The quest for high-quality complex casting components demanded by the aerospace and automobile industries, requires more precise numerical modelling techniques and one that need to be generic and modular in its approach to modelling multi-processes problems. For such a computer model to be successful in shape casting, the complete casting process needs to be addressed, the major events being:-• Filling of hot liquid metal into a cavity mould • Solidification and latent heat evolution of liquid metal • Convection currents generated in liquid metal by thermal gradients • Deformation of cast and stress development in solidified metal • Macroscopic porosity formation The above phenomena combines the analysis of fluid flow, heat transfer, change of phase and thermal stress development. None of these events can be treated in isolation as they inexorably interact with each other in a complex way. Also conditions such as design of running system, location of feeders and chills, moulding materials and types of boundary conditions can all affect on the final cast quality and must be appropriately represented in the model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A semi-Lagrangian finite volume scheme for solving viscoelastic flow problems is presented. A staggered grid arrangement is used in which the dependent variables are located at different mesh points in the computational domain. The convection terms in the momentum and constitutive equations are treated using a semi-Lagrangian approach in which particles on a regular grid are traced backwards over a single time-step. The method is applied to the 4 : 1 planar contraction problem for an Oldroyd B fluid for both creeping and inertial flow conditions. The development of vortex behaviour with increasing values of We is analyzed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new finite volume method for solving the incompressible Navier--Stokes equations is presented. The main features of this method are the location of the velocity components and pressure on different staggered grids and a semi-Lagrangian method for the treatment of convection. An interpolation procedure based on area-weighting is used for the convection part of the computation. The method is applied to flow through a constricted channel, and results are obtained for Reynolds numbers, based on half the flow rate, up to 1000. The behavior of the vortex in the salient corner is investigated qualitatively and quantitatively, and excellent agreement is found with the numerical results of Dennis and Smith [Proc. Roy. Soc. London A, 372 (1980), pp. 393-414] and the asymptotic theory of Smith [J. Fluid Mech., 90 (1979), pp. 725-754].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A 3D model of melt pool created by a moving arc type heat sources has been developed. The model solves the equations of turbulent fluid flow, heat transfer and electromagnetic field to demonstrate the flow behaviour phase-change in the pool. The coupled effects of buoyancy, capillary (Marangoni) and electromagnetic (Lorentz) forces are included within an unstructured finite volume mesh environment. The movement of the welding arc along the workpiece is accomplished via a moving co-ordinator system. Additionally a method enabling movement of the weld pool surface by fluid convection is presented whereby the mesh in the liquid region is allowed to move through a free surface. The surface grid lines move to restore equilibrium at the end of each computational time step and interior grid points then adjust following the solution of a Laplace equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An unstructured cell-centred finite volume method for modelling viscoelastic flow is presented. The method is applied to the flow through a planar channel and the 4:1 planar contraction for creeping flow of an Oldroyd-B fluid. The results are presented for a range of Weissenberg numbers. In the case of the planar channel results are compared with analytical solutions. For the 4:1 planar contraction benchmark problem the convection terms in the constitutive equations are approximated using both first and second order differencing schemes to compare the techniques and the effect of mesh refinement on the solution is investigated. This is the first time that a fully unstructured, cell-centredfinitevolume technique has been used to model the Oldroyd-B fluid for the test cases presented in this paper.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A major percentage of the heat emitted from electronic packages can be extracted by air cooling whether by means of natural or forced convection. This flow of air throughout an electronic system and the heat extracted is highly dependable on the nature of turbulence present in the flow field. This paper will discuss results from an investigation into the accuracy of turbulence models to predict air cooling for electronic packages and systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heat is extracted away from an electronic package by convection, conduction, and/or radiation. The amount of heat extracted by forced convection using air is highly dependent on the characteristics of the airflow around the package which includes its velocity and direction. Turbulence in the air is also important and is required to be modeled accurately in thermal design codes that use computational fluid dynamics (CFD). During air cooling the flow can be classified as laminar, transitional, or turbulent. In electronics systems, the flow around the packages is usually in the transition region, which lies between laminar and turbulent flow. This requires a low-Reynolds number numerical model to fully capture the impact of turbulence on the fluid flow calculations. This paper provides comparisons between a number of turbulence models with experimental data. These models included the distance from the nearest wall and the local velocity (LVEL), Wolfshtein, Norris and Reynolds, k-ε, k-ω, shear-stress transport (SST), and kε/kl models. Results show that in terms of the fluid flow calculations most of the models capture the difficult wake recirculation region behind the package reasonably well, although for packages whose heights cause a high degree of recirculation behind the package the SST model appears to struggle. The paper also demonstrates the sensitivity of the models to changes in the mesh density; this study is aimed specifically at thermal design engineers as mesh independent simulations are rarely conducted in an industrial environment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A two dimensional staggered unstructured discretisation scheme for the solution of fluid flow problems has been developed. This scheme stores and solves the velocity vector resolutes normal and parallel to each cell face and other scalar variables (pressure, temperature) are stored at cell centres. The coupled momentum; continuity and energy equations are solved, using the well known pressure correction algorithm SIMPLE. The method is tested for accuracy and convergence behaviour against standard cell-centre solutions in a number of benchmark problems: The Lid-Driven Cavity, Natural Convection in a Cavity and the Melting of Gallium in a rectangular domain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Electromagnetic Levitation (EML) is a valuable method for measuring the thermo-physical properties of metals - surface tensions, viscosity, thermal/electrical conductivity, specific heat, hemispherical emissivity, etc. – beyond their melting temperature. In EML, a small amount of the test specimen is melted by Joule heating in a suspended AC coil. Once in liquid state, a small perturbation causes the liquid envelope to oscillate and the frequency of oscillation is then used to compute its surface tension by the well know Rayleigh formula. Similarly, the rate at which the oscillation is dampened relates to the viscosity. To measure thermal conductivity, a sinusoidally varying laser source may be used to heat the polar axis of the droplet and the temperature response measured at the polar opposite – the resulting phase shift yields thermal conductivity. All these theoretical methods assume that convective effects due to flow within the droplet are negligible compared to conduction, and similarly that the flow conditions are laminar; a situation that can only be realised under microgravity conditions. Hence the EML experiment is the method favoured for Spacelab experiments (viz. TEMPUS). Under terrestrial conditions, the full gravity force has to be countered by a much larger induced magnetic field. The magnetic field generates strong flow within the droplet, which for droplets of practical size becomes irrotational and turbulent. At the same time the droplet oscillation envelope is no longer ellipsoidal. Both these conditions invalidate simple theoretical models and prevent widespread EML use in terrestrial laboratories. The authors have shown in earlier publications that it is possible to suppress most of the turbulent convection generated in the droplet skin layer, through use of a static magnetic field. Using a pseudo-spectral discretisation method it is possible compute very accurately the dynamic variation in the suspended fluid envelope and simultaneously compute the time-varying electromagnetic, flow and thermal fields. The use of a DC field as a dampening agent was also demonstrated in cold crucible melting, where suppression of turbulence was achieved in a much larger liquid metal volume and led to increased superheat in the melt and reduction of heat losses to the water-cooled walls. In this paper, the authors describe the pseudo-spectral technique as applied to EML to compute the combined effects of AC and DC fields, accounting for all the flow-induced forces acting on the liquid volume (Lorentz, Maragoni, surface tension, gravity) and show example simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A number of two dimensional staggered unstructured discretisation schemes for the solution of fluid flow and heat transfer problems have been developed. All schemes store and solve velocity vector components at cell faces with scalar variables solved at cell centres. The velocity is resolved into face-normal and face-parallel components and the various schemes investigated differ in the treatment of the parallel component. Steady-state and time-dependent fluid flow and thermal energy equations are solved with the well known pressure correction scheme, SIMPLE, employed to couple continuity and momentum. The numerical methods developed are tested on well known benchmark cases: the Lid-Driven Cavity, Natural Convection in a Cavity and Melting of Gallium in a rectangular domain. The results obtained are shown to be comparable to benchmark, but with accuracy dependent on scheme selection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary form only given. Currently the vast majority of adhesive materials in electronic products are bonded using convection heating or infra-red as well as UV-curing. These thermal processing steps can take several hours to perform, slowing throughput and contributing a significant portion of the cost of manufacturing. With the demand for lighter, faster, and smaller electronic devices, there is a need for innovative material processing techniques and control methodologies. The increasing demand for smaller and cheaper devices pose engineering challenges in designing a curing systems that minimize the time required between the curing of devices in a production line, allowing access to the components during curing for alignment and testing. Microwave radiation exhibits several favorable characteristics and over the past few years has attracted increased academic and industrial attention as an alternative solution to curing of flip-chip underfills, bumps, glob top and potting cure, structural bonding, die attach, wafer processing, opto-electronics assembly as well as RF-ID tag bonding. Microwave energy fundamentally accelerates the cure kinetics of polymer adhesives. It provides a route to focus heat into the polymer materials penetrating the substrates that typically remain transparent. Therefore microwave energy can be used to minimise the temperature increase in the surrounding materials. The short path between the energy source and the cured material ensures a rapid heating rate and an overall low thermal budget. In this keynote talk, we will review the principles of microwave curing of materials for high density packing. Emphasis will be placed on recent advances within ongoing research in the UK on the realization of "open-oven" cavities, tailored to address existing challenges. Open-ovens do not require positioning of the device into the cavity through a movable door, hence being more suitable for fully automated processing. Further potential advantages of op- - en-oven curing include the possibility for simultaneous fine placement and curing of the device into a larger assembly. These capabilities promise productivity gains by combining assembly, placement and bonding into a single processing step. Moreover, the proposed design allows for selective heating within a large substrate, which can be useful particularly when the latter includes parts sensitive to increased temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The numerical model for electrically conducting liquid droplets levitated in AC magnetic field is extended to demonstrate various factors affecting the accuracy of material property value measurements. The effects included are the electromagnetic force induced stirring and the resulting turbulence, thermo-capillary convection, and the droplet rotation. The results are validated against available analytical solutions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparison of the performance of a conventional convection oven system with a dual-section microwave system for curing thermosetting polymer encapsulant materials has been performed numerically. A numerical model capable of analysing both the convection and microwave cure processes has been developed and is breifly outliines. The model is used to analyse the curing of a commercially available encapsulant material using both systems. Results obtained from numerical solutions are presented, confirming that the VFM system enables the cure process to be carried out far more rapidly than with the convection oven system. This capability stems from the fundamental heating processes involved, namely that microwave processing enables the heating rate to be varied independently of the material temperature. Variations in cure times, curing rates, maximum temperatures and residual stresses between the processes are fully discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assembly processes used to bond components to printed circuit boards can have a significant impact on these boards and the final packaged component. Traditional approaches to bonding components to printed circuit boards results in heat being applied across the whole board assembly. This can lead to board warpage and possibly high residual stresses. Another approach discussed in this paper is to use Variable Frequency Microwave (VFM) heating to cure adhesives and underfills and bond components to printed circuit boards. In terms of energy considerations the use of VFM technology is much more cost effective compared to convection/radiation heating. This paper will discuss the impact of traditional reflow based processes on flexible substrates and it will demonstrate the possible advantages of using localised variable frequency microwave heating to cure materials in an electronic package.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents preliminary studies in electroplating using megasonic agitation to avoid the formation of voids within high aspect ratio microvias that are used for the redistribution of interconnects in high density interconnection technology in printed circuit boards. Through this technique, uniform deposition of metal on the side walls of the vias is possible. High frequency acoustic streaming at megasonic frequencies enables the decrease of the Nernst diffusion layer down to the sub-micron range, allowing thereby conformal electrodeposition in deep grooves. This effect enables the normally convection free liquid near the surface to be agitated. Higher throughput and better control of the material properties of the deposits can be achieved for the manufacturing of embedded interconnections and metal-based MEMS. For optimal filling performance of the microvias, a full design of experiments (DOE) and a multi-physics numerical simulation have been conducted to analyse the influence of megasonic agitation on the plating quality of the microvias. Megasonic based deposition has been found to increase the deposition rate as well as improving the quality of the metal deposits.