923 resultados para route
Resumo:
Hexagonal Cu-2 Te has been synthesised by mechanical alloying from elemental powders. The milling time required for the synthesis is longer than that reported for other tellurides. The mechanical grinding of the bulk Cu2Te obtained by the melting route does not change the structure. Prolonged milling as well as grinding beyond 40 h lead to a decrease in grain size to nanometer level. The cold compaction of milled or ground powders exhibit much smaller Seebeck coefficient (thermopower). However, cold compaction of samples milled for longer time (>150 h) lead to the thermopower values close to that of the bulk indicating significant improvement of rheological properties at room temperature for powders milled for long times.
Resumo:
Poly[(2,5-dimethoxy-p-phenylene)vinylene] (DMPPV) of varying conjugation length was synthesized by selective elimination of organic soluble precursor polymers that contained two eliminatable groups, namely, methoxy and acetate groups. These precursor copolymers were in turn synthesized by competitive nucleophilic substitution of the sulfonium polyelectrolyte precursor (generated by the standard Wessling route) using methanol and sodium acetate in acetic acid. The composition of the precursor copolymer, in terms of the relative amounts of methoxy and acetate groups, was controlled by varying the composition of the reaction mixture during nucleophilic substitution. Thermal elimination of these precursor copolymers at 250 degrees C, yielded partially conjugated polymers, whose color varied from light yellow to deep red. FT-IR studies confirmed that, while essentially all the acetate groups were eliminated, the methoxy groups were intact and caused the interruption in conjugation. Preliminary photoluminescence studies of the partially eliminated DMPPV samples showed a gradual shift in the emission maximum from 498 to 598 nm with increasing conjugation lengths, suggesting that the color of LED devices fabricated from such polymers can, in principle, be fine-tuned.
Resumo:
Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.
Resumo:
The formation of ordered arrays of molecules via self-assembly is a rapid, scalable route towards the realization of nanoscale architectures with tailored properties. In recent years, graphene has emerged as an appealing substrate for molecular self-assembly in two dimensions. Here, the first five years of progress in supramolecular organization on graphene are reviewed. The self-assembly process can vary depending on the type of graphene employed: epitaxial graphene, grown in situ on a metal surface, and non-epitaxial graphene, transferred onto an arbitrary substrate, can have different effects on the final structure. On epitaxial graphene, the process is sensitive to the interaction between the graphene and the substrate on which it is grown. In the case of graphene that strongly interacts with its substrate, such as graphene/Ru(0001), the inhomogeneous adsorption landscape of the graphene moiré superlattice provides a unique opportunity for guiding molecular organization, since molecules experience spatially constrained diffusion and adsorption. On weaker-interacting epitaxial graphene films, and on non-epitaxial graphene transferred onto a host substrate, self-assembly leads to films similar to those obtained on graphite surfaces. The efficacy of a graphene layer for facilitating planar adsorption of aromatic molecules has been repeatedly demonstrated, indicating that it can be used to direct molecular adsorption, and therefore carrier transport, in a certain orientation, and suggesting that the use of transferred graphene may allow for predictible molecular self-assembly on a wide range of surfaces.
Resumo:
Bi1.5ZnTa1.5O7 (BZT) has been synthesized using an alkoxide based sol-gel reaction route. The evolution of the phases produced from the alkoxide precursors and their properties have been characterized as function of temperature using a combination of thermogravimetric analysis (TGA) coupled with mass spectrometry (MS), infrared emission spectrometry (IES), X-ray diffraction (XRD), ultraviolet and visible (UV-Vis) spectroscopy, Raman spectroscopy, and N2 adsorption/desorption isotherms. The lowest sintering temperature (600∘C) to obtain phase pure BZT powders with high surface area (14.5m2/g) has been determined from the thermal decomposition and phase analyses.The photocatalytic activity of the BZT powders has been tested for the decolorization of organic azo-dye and found to be photoactive under UV irradiation.The electronic band structure of the BZT has been investigated using density functional theory (DFT) calculations to determine the band gap energy (3.12 eV) and to compare it with experimental band gap (3.02 eV at 800∘C) from optical absorptionmeasurements. An excellent match is obtained for an assumption of Zn cation substitutions at specifically ordered sites in the BZT structure.
Resumo:
Manganitelike double perovskite Sr2TiMnO6 (STMO) ceramics fabricated from the powders synthesized via the solid-state reaction route, exhibited dielectric constants as high as similar to 10(5) in the low frequency range (100 Hz-10 kHz) at room temperature. The Maxwell-Wagner type of relaxation mechanism was found to be more appropriate to rationalize such high dielectric constant values akin to that observed in materials such as KxTiyNi(1-x-y)O and CaCu3Ti4O12. The dielectric measurements carried out on the samples with different thicknesses and electrode materials reflected the influence of extrinsic effects. The impedance studies (100 Hz-10 MHz) in the 180-300 K temperature range revealed the presence of two dielectric relaxations corresponding to the grain boundary and the electrode. The dielectric response of the grain boundary was found to be weakly dependent on the dc bias field (up to 11 V/cm). However, owing to the electrode polarization, the applied ac/dc field had significant effect on the low frequency dielectric response. At low temperatures (100-180 K), the dc conductivity of STMO followed a variable range hopping behavior. Above 180 K, it followed the Arrhenius behavior because of the thermally activated conduction process. The bulk conductivity relaxation owing to the localized hopping of charge carriers obeyed the typical universal dielectric response.
Resumo:
Highly luminescent CdSe/CdS core-shell nanocrystals have been assembled on indium tin oxide (ITO) coated glass substrates using a wet synthesis route. The physical properties of the quantum dots (QD) have been investigated using X-ray diffraction, transmission electron microscopy and optical absorption spectroscopy techniques. These quantum dots showed a strong enhancement in the near band edge absorption. The in situ luminescence behavior has been interpreted in the light of the quantum confinement effect and induced strain in the core-shell structure.
Resumo:
Barium lanthanum bismuth titanate (Ba1−(3/2)xLaxBi4Ti4O15, x = 0–0.4) ceramics were fabricated using the powders synthesized via the solid-state reaction route. X-ray powder diffraction analysis confirmed the above compositions to be monophasic and belonged to the m = 4 member of the Aurivillius family of oxides. The effect of the partial presence of La3+ on Ba2+ sites on the microstructure, dielectric and relaxor behaviour of BaBi4Ti4O15 (BBT) ceramics was investigated. For the compositions pertaining to x ≤ 0.1, the dielectric constant at both room temperature and in the vicinity of the temperature of the dielectric maximum (Tm) of the parent phase (BBT) increased significantly with an increase in x while Tm remained almost constant. Tm shifted towards lower temperatures accompanied by a decrease in the magnitude of the dielectric maximum (εm) with an increase in the lanthanum content (0.1 < x ≤ 0.4). The dielectric relaxation was modelled using the Vogel–Fulcher relation and a decrease in the activation energy for frequency dispersion with increasing x was observed. The frequency dispersion of Tm was found to decrease with an increase in lanthanum doping, and for compositions corresponding to x ≥ 0.3, Tm was frequency independent. Well-developed P(polarization)–E(electric field) hysteresis loops were observed at 150 °C for all the samples and the remanent polarization (2Pr) was improved from 6.3 µC cm−2 for pure BBT to 13.4 µC cm−2 for Ba0.7La0.2Bi4Ti4O15 ceramics. Dc conductivities and associated activation energies were evaluated using impedance spectroscopy.
Resumo:
Wireless adhoc networks transmit information from a source to a destination via multiple hops in order to save energy and, thus, increase the lifetime of battery-operated nodes. The energy savings can be especially significant in cooperative transmission schemes, where several nodes cooperate during one hop to forward the information to the next node along a route to the destination. Finding the best multi-hop transmission policy in such a network which determines nodes that are involved in each hop, is a very important problem, but also a very difficult one especially when the physical wireless channel behavior is to be accounted for and exploited. We model the above optimization problem for randomly fading channels as a decentralized control problem - the channel observations available at each node define the information structure, while the control policy is defined by the power and phase of the signal transmitted by each node. In particular, we consider the problem of computing an energy-optimal cooperative transmission scheme in a wireless network for two different channel fading models: (i) slow fading channels, where the channel gains of the links remain the same for a large number of transmissions, and (ii) fast fading channels, where the channel gains of the links change quickly from one transmission to another. For slow fading, we consider a factored class of policies (corresponding to local cooperation between nodes), and show that the computation of an optimal policy in this class is equivalent to a shortest path computation on an induced graph, whose edge costs can be computed in a decentralized manner using only locally available channel state information (CSI). For fast fading, both CSI acquisition and data transmission consume energy. Hence, we need to jointly optimize over both these; we cast this optimization problem as a large stochastic optimization problem. We then jointly optimize over a set of CSI functions of the local channel states, and a c- - orresponding factored class of control poli.
Resumo:
Travel speed is one of the most critical parameters for road safety; the evidence suggests that increased vehicle speed is associated with higher crash risk and injury severity. Both naturalistic and simulator studies have reported that drivers distracted by a mobile phone select a lower driving speed. Speed decrements have been argued to be a risk compensatory behaviour of distracted drivers. Nonetheless, the extent and circumstances of the speed change among distracted drivers are still not known very well. As such, the primary objective of this study was to investigate patterns of speed variation in relation to contextual factors and distraction. Using the CARRS-Q high-fidelity Advanced Driving Simulator, the speed selection behaviour of 32 drivers aged 18-26 years was examined in two phone conditions: baseline (no phone conversation) and handheld phone operation. The simulator driving route contained five different types of road traffic complexities, including one road section with a horizontal S curve, one horizontal S curve with adjacent traffic, one straight segment of suburban road without traffic, one straight segment of suburban road with traffic interactions, and one road segment in a city environment. Speed deviations from the posted speed limit were analysed using Ward’s Hierarchical Clustering method to identify the effects of road traffic environment and cognitive distraction. The speed deviations along curved road sections formed two different clusters for the two phone conditions, implying that distracted drivers adopt a different strategy for selecting driving speed in a complex driving situation. In particular, distracted drivers selected a lower speed while driving along a horizontal curve. The speed deviation along the city road segment and other straight road segments grouped into a different cluster, and the deviations were not significantly different across phone conditions, suggesting a negligible effect of distraction on speed selection along these road sections. Future research should focus on developing a risk compensation model to explain the relationship between road traffic complexity and distraction.
Resumo:
Activation of midbrain dopamine systems is thought to be critically involved in the addictive properties of abused substances. Drugs of abuse increase dopamine release in the nucleus accumbens and dorsal striatum, which are the target areas of mesolimbic and nigrostriatal dopamine pathways, respectively. Dopamine release in the nucleus accumbens is thought to mediate the attribution of incentive salience to rewards, and dorsal striatal dopamine release is involved in habit formation. In addition, changes in the function of prefrontal cortex (PFC), the target area of mesocortical dopamine pathway, may skew information processing and memory formation such that the addict pays an abnormal amount of attention to drug-related cues. In this study, we wanted to explore how long-term forced oral nicotine exposure or the lack of catechol-O-methyltransferase (COMT), one of the dopamine metabolizing enzymes, would affect the functioning of these pathways. We also wanted to find out how the forced nicotine exposure or the lack of COMT would affect the consumption of nicotine, alcohol, or cocaine. First, we studied the effect of forced chronic nicotine exposure on the sensitivity of dopamine D2-like autoreceptors in microdialysis and locomotor activity experiments. We found that the sensitivity of these receptors was unchanged after forced oral nicotine exposure, although an increase in the sensitivity was observed in mice treated with intermittent nicotine injections twice daily for 10 days. Thus, the effect of nicotine treatment on dopamine autoreceptor sensitivity depends on the route, frequency, and time course of drug administration. Second, we investigated whether the forced oral nicotine exposure would affect the reinforcing properties of nicotine injections. The chronic nicotine exposure did not significantly affect the development of conditioned place preference to nicotine. In the intravenous self-administration paradigm, however, the nicotine-exposed animals self-administered nicotine at a lower unit dose than the control animals, indicating that their sensitivity to the reinforcing effects of nicotine was enhanced. Next, we wanted to study whether the Comt gene knock-out animals would be a suitable model to study alcohol and cocaine consumption or addiction. Although previous work had shown male Comt knock-out mice to be less sensitive to the locomotor-activating effects of cocaine, the present study found that the lack of COMT did not affect the consumption of cocaine solutions or the development of cocaine-induced place preference. However, the present work did find that male Comt knock-out mice, but not female knock-out mice, consumed ethanol more avidly than their wild-type littermates. This finding suggests that COMT may be one of the factors, albeit not a primary one, contributing to the risk of alcoholism. Last, we explored the effect of COMT deficiency on dorsal striatal, accumbal, and prefrontal cortical dopamine metabolism under no-net-flux conditions and under levodopa load in freely-moving mice. The lack of COMT did not affect the extracellular dopamine concentrations under baseline conditions in any of the brain areas studied. In the prefrontal cortex, the dopamine levels remained high for a prolonged time after levodopa treatment in male, but not female, Comt knock-out mice. COMT deficiency induced accumulation of 3,4-dihydroxyphenylacetic acid, which increased further under levodopa load. Homovanillic acid was not detectable in Comt knock-out animals either under baseline conditions or after levodopa treatment. Taken together, the present results show that although forced chronic oral nicotine exposure affects the reinforcing properties of self-administered nicotine, it is not an addiction model itself. COMT seems to play a minor role in dopamine metabolism and in the development of addiction under baseline conditions, indicating that dopamine function in the brain is well-protected from perturbation. However, the role of COMT becomes more important when the dopaminergic system is challenged, such as by pharmacological manipulation.
Resumo:
New Video Gamer: Africa Needs More Technology (CNN 12/12/2011) In December 2011 CNN news service online edition (Sutter, 2011) posted a short item about Cwi Nqane, a Khoisan man who entered Samsung’s Namibian World Cyber Games (WCG) heats held at the 2011 the annual Windhoek Show. Cwi Nqane won a place on the Namibian WCG team playing a smartphone game called Asphalt 6: Adrena-line (Gameloft, 2011). Cwi was presented with a ‘top of the line’ Samsung Galaxy tablet and subsequently sent to compete in Korea. Later, other news and game news websites re-reported the incident, which inspired a variety of enthusiastic comment about tech-nology and ‘new knowledge’. Then Kotaku news service picked up the item (Narcisse, 2011) and took a very different slant. Kotaku proposed that Samsung was exploiting Cwi and had assumed the role of a Techno-Tarzan: “striding into Nqane’s homeland and swinging him off into the wonders of the modern world where they can trot him out as a curiosity”. These two perspectives on the story of Cwi’s WCG entry expose two dominant views on Indigenous knowledges and technologies: ICTs as progress for in-digenous peoples and ICTs as disruptive and exploitative. Neither position, however, allows for the claiming of digital technology by indigenous communities, indeed both views position indigenous cultures as being outsiders.
Resumo:
This work reports on the synthesis of a wide range of ferrocenyl-substituted amino acids and peptides in excellent yield. Conjugation is established via copper-catalyzed 1,3-dipolar cycloaddition. Two complementary strategies were employed for conjugation, one involving cycloaddition of amino acid derived azides with ethynyl ferrocene 1 and the other involves cycloaddition between amino acid derived alkynes with ferrocene-derived azides 2 and 3. Labeling of amino acids at multiple sites with ferrocene is discussed. A new route to 1,1'-unsymmetrically substituted ferrocene conjugates is reported. A novel ferrocenophane 19 is accessed via bimolecular condensation of amino acid derived bis-alkyne 9b with the azide 2. The electrochemical behavior of some selected ferrocene conjugates has been studied by cyclic voltammetry.
Calciothermic reduction of TiO2: A diagrammatic assessment of the thermodynamic limit of deoxidation
Resumo:
Calciothermic reduction of TiO2 provides a potentially low-cost route to titanium production. Presented in this article is a suitably designed diagram, useful for assessing the degree of reduction of TiO2 and residual oxygen contamination in metal as a function of reduction temperature and other process parameters. The oxygen chemical potential diagram à la Ellingham-Richardson-Jeffes is useful for visualization of the thermodynamics of reduction reactions at high temperatures. Although traditionally the diagram depicts oxygen potentials corresponding to the oxidation of different metals to their corresponding oxides or of lower oxides to higher oxides, oxygen potentials associated with solution phases at constant composition can be readily superimposed. The usefulness of the diagram for an insightful analysis of calciothermic reduction, either direct or through an electrochemical process, is discussed. Identified are possible process variations, modeling and optimization strategies.
Resumo:
One of the most fundamental questions in the philosophy of mathematics concerns the relation between truth and formal proof. The position according to which the two concepts are the same is called deflationism, and the opposing viewpoint substantialism. In an important result of mathematical logic, Kurt Gödel proved in his first incompleteness theorem that all consistent formal systems containing arithmetic include sentences that can neither be proved nor disproved within that system. However, such undecidable Gödel sentences can be established to be true once we expand the formal system with Alfred Tarski s semantical theory of truth, as shown by Stewart Shapiro and Jeffrey Ketland in their semantical arguments for the substantiality of truth. According to them, in Gödel sentences we have an explicit case of true but unprovable sentences, and hence deflationism is refuted. Against that, Neil Tennant has shown that instead of Tarskian truth we can expand the formal system with a soundness principle, according to which all provable sentences are assertable, and the assertability of Gödel sentences follows. This way, the relevant question is not whether we can establish the truth of Gödel sentences, but whether Tarskian truth is a more plausible expansion than a soundness principle. In this work I will argue that this problem is best approached once we think of mathematics as the full human phenomenon, and not just consisting of formal systems. When pre-formal mathematical thinking is included in our account, we see that Tarskian truth is in fact not an expansion at all. I claim that what proof is to formal mathematics, truth is to pre-formal thinking, and the Tarskian account of semantical truth mirrors this relation accurately. However, the introduction of pre-formal mathematics is vulnerable to the deflationist counterargument that while existing in practice, pre-formal thinking could still be philosophically superfluous if it does not refer to anything objective. Against this, I argue that all truly deflationist philosophical theories lead to arbitrariness of mathematics. In all other philosophical accounts of mathematics there is room for a reference of the pre-formal mathematics, and the expansion of Tarkian truth can be made naturally. Hence, if we reject the arbitrariness of mathematics, I argue in this work, we must accept the substantiality of truth. Related subjects such as neo-Fregeanism will also be covered, and shown not to change the need for Tarskian truth. The only remaining route for the deflationist is to change the underlying logic so that our formal languages can include their own truth predicates, which Tarski showed to be impossible for classical first-order languages. With such logics we would have no need to expand the formal systems, and the above argument would fail. From the alternative approaches, in this work I focus mostly on the Independence Friendly (IF) logic of Jaakko Hintikka and Gabriel Sandu. Hintikka has claimed that an IF language can include its own adequate truth predicate. I argue that while this is indeed the case, we cannot recognize the truth predicate as such within the same IF language, and the need for Tarskian truth remains. In addition to IF logic, also second-order logic and Saul Kripke s approach using Kleenean logic will be shown to fail in a similar fashion.