999 resultados para plume monitoring
Resumo:
The Pasvik monitoring programme was created in 2006 as a result of the trilateral cooperation, and with the intention of following changes in the environment under variable pollution levels. Water quality is one of the basic elements of the Programme when assessing the effects of the emissions from the Pechenganikel mining and metallurgical industry (Kola GMK). The Metallurgic Production Renovation Programme was implemented by OJSC Kola GMK to reduce emissions of sulphur and heavy metal concentrated dust. However, the expectations for the reduction in emissions from the smelter in the settlement Nikel were not realized. Nevertheless, Kola GMK has found that the modernization programme’s measures do not provide the planned reductions of sulfur dioxide emissions. In this report, temporal trends in water chemistry during 2000–2009 are examined on the basis of the data gathered from Lake Inari, River Pasvik and directly connected lakes, as well as from 26 small lakes in three areas: Pechenganikel (Russia), Jarfjord (Norway) and Vätsäri (Finland). The lower parts of the Pasvik watercourse are impacted by both atmospheric pollution and direct wastewater discharge from the Pechenganikel smelter and the settlement of Nikel. The upper section of the watercourse, and the small lakes and streams which are not directly linked to the Pasvik watercourse, only receive atmospheric pollution. The data obtained confirms the ongoing pollution of the river and water system. Copper (Cu), nickel (Ni) and sulphates are the main pollution components. The highest levels were observed close to the smelters. The most polluted water source of the basin is the River Kolosjoki, as it directly receives the sewage discharge from the smelters and the stream connecting the Lakes Salmijarvi and Kuetsjarvi. The concentrations of metals and sulphates in the River Pasvik are higher downstream from the Kuetsjarvi Lake. There has been no fall in the concentrations of pollutants in Pasvik watercourse over the last 10 years. Ongoing recovery from acidification has been evident in the small lakes of the Jarfjord and Vätsäri areas during the 2000s. The buffering capacity of these lakes has improved and the pH has increased. The reason for this recovery is that sulphate deposition has decreased, which is also evident in the water quality. However, concentrations of some metals, especially Ni and Cu, have risen during the 2000s. Ni concentrations have increased in all three areas, and Cu concentrations in the Pechenganickel and Jarfjord areas, which are located closer to the smelters. Emission levels of Ni and Cu did not fall during 2000s. In fact, the emission levels of Ni compounds even increased compared to the 1990s.
Resumo:
This study was designed to assess the relationship between antibodies against bovine viral diarrhea virus (BVDV) determined in the bulk tank milk (BTM) and the within-herd seroprevalence. We also assessed the efficiency of measuring antibody levels in BTM samples to monitor BVDV infection status in a herd. In the 81 farms included in the study, BTM samples were obtained and blood samples withdrawn from all cattle older than one year. The infection status was then determined in serum and milk using a commercial blocking ELISA based on the detection of anti-p80 antibodies. Apart from these baseline serum and milk samples, another BTM sample was collected from each herd 9 months later, and a third BTM sample obtained 9 months after this. In these second and third milk samples, anti-BVDV antibodies were determined using the same ELISA kit. Statistical tests revealed good agreement between herd seroprevalences (% seropositive animals in the herd) and the antibody levels detected in the BTM samples. During the 18 months of follow-up, the farms with persistently infected cattle at the study outset (14.8% of the herds) showed a significant decrease in BTM antibody titers after virus clearance. Conversely, a significant increase in BTM antibody levels was observed in the herds infected with BVDV during the follow-up period. Our findings indicate that monitoring antibody levels in the BTM is a useful method of identifying changes in the BVDV infection status of a herd.
Resumo:
It is known already from 1970´s that laser beam is suitable for processing paper materials. In this thesis, term paper materials mean all wood-fibre based materials, like dried pulp, copy paper, newspaper, cardboard, corrugated board, tissue paper etc. Accordingly, laser processing in this thesis means all laser treatments resulting material removal, like cutting, partial cutting, marking, creasing, perforation etc. that can be used to process paper materials. Laser technology provides many advantages for processing of paper materials: non-contact method, freedom of processing geometry, reliable technology for non-stop production etc. Especially packaging industry is very promising area for laser processing applications. However, there are only few industrial laser processing applications worldwide even in beginning of 2010´s. One reason for small-scale use of lasers in paper material manufacturing is that there is a shortage of published research and scientific articles. Another problem, restraining the use of laser for processing of paper materials, is colouration of paper material i.e. the yellowish and/or greyish colour of cut edge appearing during cutting or after cutting. These are the main reasons for selecting the topic of this thesis to concern characterization of interaction of laser beam and paper materials. This study was carried out in Laboratory of Laser Processing at Lappeenranta University of Technology (Finland). Laser equipment used in this study was TRUMPF TLF 2700 carbon dioxide laser that produces a beam with wavelength of 10.6 μm with power range of 190-2500 W (laser power on work piece). Study of laser beam and paper material interaction was carried out by treating dried kraft pulp (grammage of 67 g m-2) with different laser power levels, focal plane postion settings and interaction times. Interaction between laser beam and dried kraft pulp was detected with different monitoring devices, i.e. spectrometer, pyrometer and active illumination imaging system. This way it was possible to create an input and output parameter diagram and to study the effects of input and output parameters in this thesis. When interaction phenomena are understood also process development can be carried out and even new innovations developed. Fulfilling the lack of information on interaction phenomena can assist in the way of lasers for wider use of technology in paper making and converting industry. It was concluded in this thesis that interaction of laser beam and paper material has two mechanisms that are dependent on focal plane position range. Assumed interaction mechanism B appears in range of average focal plane position of 3.4 mm and 2.4 mm and assumed interaction mechanism A in range of average focal plane position of 0.4 mm and -0.6 mm both in used experimental set up. Focal plane position 1.4 mm represents midzone of these two mechanisms. Holes during laser beam and paper material interaction are formed gradually: first small hole is formed to interaction area in the centre of laser beam cross-section and after that, as function of interaction time, hole expands, until interaction between laser beam and dried kraft pulp is ended. By the image analysis it can be seen that in beginning of laser beam and dried kraft pulp material interaction small holes off very good quality are formed. It is obvious that black colour and heat affected zone appear as function of interaction time. This reveals that there still are different interaction phases within interaction mechanisms A and B. These interaction phases appear as function of time and also as function of peak intensity of laser beam. Limit peak intensity is the value that divides interaction mechanism A and B from one-phase interaction into dual-phase interaction. So all peak intensity values under limit peak intensity belong to MAOM (interaction mechanism A one-phase mode) or to MBOM (interaction mechanism B onephase mode) and values over that belong to MADM (interaction mechanism A dual-phase mode) or to MBDM (interaction mechanism B dual-phase mode). Decomposition process of cellulose is evolution of hydrocarbons when temperature is between 380- 500°C. This means that long cellulose molecule is split into smaller volatile hydrocarbons in this temperature range. As temperature increases, decomposition process of cellulose molecule changes. In range of 700-900°C, cellulose molecule is mainly decomposed into H2 gas; this is why this range is called evolution of hydrogen. Interaction in this range starts (as in range of MAOM and MBOM), when a small good quality hole is formed. This is due to “direct evaporation” of pulp via decomposition process of evolution of hydrogen. And this can be seen can be seen in spectrometer as high intensity peak of yellow light (in range of 588-589 nm) which refers to temperature of ~1750ºC. Pyrometer does not detect this high intensity peak since it is not able to detect physical phase change from solid kraft pulp to gaseous compounds. As interaction time between laser beam and dried kraft pulp continues, hypothesis is that three auto ignition processes occurs. Auto ignition of substance is the lowest temperature in which it will spontaneously ignite in a normal atmosphere without an external source of ignition, such as a flame or spark. Three auto ignition processes appears in range of MADM and MBDM, namely: 1. temperature of auto ignition of hydrogen atom (H2) is 500ºC, 2. temperature of auto ignition of carbon monoxide molecule (CO) is 609ºC and 3. temperature of auto ignition of carbon atom (C) is 700ºC. These three auto ignition processes leads to formation of plasma plume which has strong emission of radiation in range of visible light. Formation of this plasma plume can be seen as increase of intensity in wavelength range of ~475-652 nm. Pyrometer shows maximum temperature just after this ignition. This plasma plume is assumed to scatter laser beam so that it interacts with larger area of dried kraft pulp than what is actual area of beam cross-section. This assumed scattering reduces also peak intensity. So result shows that assumably scattered light with low peak intensity is interacting with large area of hole edges and due to low peak intensity this interaction happens in low temperature. So interaction between laser beam and dried kraft pulp turns from evolution of hydrogen to evolution of hydrocarbons. This leads to black colour of hole edges.
Resumo:
The purpose of this investigation was to demonstrate the feasibility of a biopsy technique by performing serial evaluations of tissue samples of the forelimb superficial digital flexor tendon (SDFT) in healthy horses and in horses subjected to superficial digital flexor tendonitis induction. Eight adult horses were evaluated in two different phases (P), control (P1) and tendonitis-induced (P2). At P1, the horses were subjected to five SDFT biopsies of the left forelimb, with 24 hours (h) of interval. Clinical and ultrasonographic (US) examinations were performed immediately before the tendonitis induction, 24 and 48 h after the procedure. The biopsied tendon tissues were analyzed through histology. P2 evaluations were carried out three months later, when the same horses were subjected to tendonitis induction by injection of bacterial collagenase into the right forelimb SDFT. P2 clinical and US evaluations, and SDFT biopsies were performed before, and after injury induction at the following time intervals: after 24, 48, 72 and 96 h, and after 15, 30, 60, 90, 120 and 150 days. The biopsy technique has proven to be easy and quick to perform and yielded good tendon samples for histological evaluation. At P1 the horses did not show signs of localised inflammation, pain or lameness, neither SDFT US alterations after biopsies, showing that the biopsy procedure per se did not risk tendon integrity. Therefore, this procedure is feasible for routine tendon histological evaluations. The P2 findings demonstrate a relation between the US and histology evaluations concerning induced tendonitis evolution. However, the clinical signs of tendonitis poorly reflected the microscopic tissue condition, indicating that clinical presentation is not a reliable parameter for monitoring injury development. The presented method of biopsying SDFT tissue in horses enables the serial collection of material for histological analysis causing no clinical signs and tendon damage seen by US images. Therefore, this technique allows tendonitis to be monitored and can be considered an excellent tool in protocols for evaluating SDFT injury.
Resumo:
Collared peccaries (Peccary tajacu) are among the most hunted species in Latin America due the appreciation of their pelt and meat. In order to optimize breeding management of captive born collared peccaries in semiarid conditions, the objective was to describe and correlate the changes in the ovarian ultrasonographic pattern, hormonal profile, vulvar appearance, and vaginal cytology during the estrus cycle in this species. During 45 days, females (n=4) were subjected each three days to blood collection destined to hormonal dosage by enzyme immunoassay (EIA). In the same occasions, evaluation of external genitalia, ovarian ultrasonography and vaginal cytology were conducted. Results are presented as means and standard deviations. According to hormonal dosage, six estrous cycles were identified as lasting 21.0 ± 5.7 days, being on average 6 days for the estrogenic phase and 15 days for the progesterone phase. Estrogen presented mean peak values of 55.6 ± 20.5 pg/mL. During the luteal phase, the high values for progesterone were 35.3 ± 4.4 ng/mL. The presence of vaginal mucus, a reddish vaginal mucosa and the separation of the vulvar lips were verified in all animals during the estrogenic peak. Through ultrasonography, ovarian follicles measuring 0.2±0.1 cm were visualized during the estrogen peak. Corpora lutea presented hyperechoic regions measuring 0.4±0.2 cm identified during luteal phase. No significant differences (P>0.05) between proportions of vaginal epithelial cells were identified when comparing estrogenic and progesterone phases. In conclusion, female collared peccaries, captive born in semiarid conditions, have an estral cycle that lasts 21.0±5.7 days, with estrous signs characterized by vulvar lips edema and hyperemic vaginal mucosa, coinciding with developed follicles and high estrogen levels.
Resumo:
Abstract: Rotaviruses are etiological agents of diarrhea both in humans and in several animal species. Data on avian Group D rotaviruses (RVD) are scarce, especially in Brazil. We detected RVD in 4 pools of intestinal contents of broilers, layer and broiler breeders out of a total of 111 pools from 8 Brazilian states, representing an occurrence of 3.6%, by a specific RVD RT-PCR targeting the VP6 gene. Phylogenetic tree confirmed that the Brazilian strains belong to group D and 3 of the sequences were identical in terms of amino acid whereas one showed 99.5% identity with the others. The sequences described in this study are similar to other sequences previously detected in Brazil, confirming the conserved nature of the VP6 protein.
Resumo:
Abstract: This study aimed to evaluate the efficacy of detection of anti-Aspergillus fumigatus antibodies in captive penguins by double radial agar gel immunodiffusion (AGID) for the aspergillosis diagnosis. We included 134 Magellanic penguins (Spheniscus magellanicus) in rehabilitation at the Center for Recovery of Marine Animals (CRAM / FURG). All of them were monitored by AGID weekly until its final destination (death or release), totalizing 660 serum samples studied. All animals were clinically accompanied and post-mortem examinations was performed in penguins that died during the studied period. A total of 28% (37/134) of the penguins died, 89.2% (33/37) due to aspergillosis, 11% (4/37) by other causes and 97 were released. From the 33 animals with proven aspergillosis, 21 presented anti- A. fumigatus antibodies by AGID, being the average interval between death and positive AGID 16.4 days. Twelve animals with negative serology died of aspergillosis. The sensitivity and specificity rates were 63.6% and 95% respectively, and the positive and negative predictive values were 80.7% and 88.9% respectively. These data demonstrate that the serological monitoring for detection of antibodies by AGID can be an important tool for the diagnosis of aspergillosis in penguins.
Resumo:
Fan systems are responsible for approximately 10% of the electricity consumption in industrial and municipal sectors, and it has been found that there is energy-saving potential in these systems. To this end, variable speed drives (VSDs) are used to enhance the efficiency of fan systems. Usually, fan system operation is optimized based on measurements of the system, but there are seldom readily installed meters in the system that can be used for the purpose. Thus, sensorless methods are needed for the optimization of fan system operation. In this thesis, methods for the fan operating point estimation with a variable speed drive are studied and discussed. These methods can be used for the energy efficient control of the fan system without additional measurements. The operation of these methods is validated by laboratory measurements and data from an industrial fan system. In addition to their energy consumption, condition monitoring of fan systems is a key issue as fans are an integral part of various production processes. Fan system condition monitoring is usually carried out with vibration measurements, which again increase the system complexity. However, variable speed drives can already be used for pumping system condition monitoring. Therefore, it would add to the usability of a variablespeed- driven fan system if the variable speed drive could be used as a condition monitoring device. In this thesis, sensorless detection methods for three lifetime-reducing phenomena are suggested: these are detection of the fan contamination build-up, the correct rotational direction, and the fan surge. The methods use the variable speed drive monitoring and control options for the detection along with simple signal processing methods, such as power spectrum density estimates. The methods have been validated by laboratory measurements. The key finding of this doctoral thesis is that a variable speed drive can be used on its own as a monitoring and control device for the fan system energy efficiency, and it can also be used in the detection of certain lifetime-reducing phenomena.
Resumo:
Bioprocess technology is a multidisciplinary industry that combines knowledge of biology and chemistry with process engineering. It is a growing industry because its applications have an important role in the food, pharmaceutical, diagnostics and chemical industries. In addition, the current pressure to decrease our dependence on fossil fuels motivates new, innovative research in the replacement of petrochemical products. Bioprocesses are processes that utilize cells and/or their components in the production of desired products. Bioprocesses are already used to produce fuels and chemicals, especially ethanol and building-block chemicals such as carboxylic acids. In order to enable more efficient, sustainable and economically feasible bioprocesses, the raw materials must be cheap and the bioprocesses must be operated at optimal conditions. It is essential to measure different parameters that provide information about the process conditions and the main critical process parameters including cell density, substrate concentrations and products. In addition to offline analysis methods, online monitoring tools are becoming increasingly important in the optimization of bioprocesses. Capillary electrophoresis (CE) is a versatile analysis technique with no limitations concerning polar solvents, analytes or samples. Its resolution and efficiency are high in optimized methods creating a great potential for rapid detection and quantification. This work demonstrates the potential and possibilities of CE as a versatile bioprocess monitoring tool. As a part of this study a commercial CE device was modified for use as an online analysis tool for automated monitoring. The work describes three offline CE analysis methods for the determination of carboxylic, phenolic and amino acids that are present in bioprocesses, and an online CE analysis method for the monitoring of carboxylic acid production during bioprocesses. The detection methods were indirect and direct UV, and laser-induced frescence. The results of this work can be used for the optimization of bioprocess conditions, for the development of more robust and tolerant microorganisms, and to study the dynamics of bioprocesses.
Resumo:
The pumping processes requiring wide range of flow are often equipped with parallelconnected centrifugal pumps. In parallel pumping systems, the use of variable speed control allows that the required output for the process can be delivered with a varying number of operated pump units and selected rotational speed references. However, the optimization of the parallel-connected rotational speed controlled pump units often requires adaptive modelling of both parallel pump characteristics and the surrounding system in varying operation conditions. The available information required for the system modelling in typical parallel pumping applications such as waste water treatment and various cooling and water delivery pumping tasks can be limited, and the lack of real-time operation point monitoring often sets limits for accurate energy efficiency optimization. Hence, alternatives for easily implementable control strategies which can be adopted with minimum system data are necessary. This doctoral thesis concentrates on the methods that allow the energy efficient use of variable speed controlled parallel pumps in system scenarios in which the parallel pump units consist of a centrifugal pump, an electric motor, and a frequency converter. Firstly, the suitable operation conditions for variable speed controlled parallel pumps are studied. Secondly, methods for determining the output of each parallel pump unit using characteristic curve-based operation point estimation with frequency converter are discussed. Thirdly, the implementation of the control strategy based on real-time pump operation point estimation and sub-optimization of each parallel pump unit is studied. The findings of the thesis support the idea that the energy efficiency of the pumping can be increased without the installation of new, more efficient components in the systems by simply adopting suitable control strategies. An easily implementable and adaptive control strategy for variable speed controlled parallel pumping systems can be created by utilizing the pump operation point estimation available in modern frequency converters. Hence, additional real-time flow metering, start-up measurements, and detailed system model are unnecessary, and the pumping task can be fulfilled by determining a speed reference for each parallel-pump unit which suggests the energy efficient operation of the pumping system.
Resumo:
Remote monitoring of a power boiler allows the supplying company to make sure that equipment is used as supposed to and gives a good chance for process optimization. This improves co-operation between the supplier and the customer and creates an aura of trust that helps securing future contracts. Remote monitoring is already in use with recovery boilers but the goal is to expand especially to biomass-fired BFB-boilers. To make remote monitoring possible, data has to be measured reliably on site and the link between the power plant and supplying company’s server has to work reliably. Data can be gathered either with the supplier’s sensors or with measurements originally installed in the power plant if the plant in question is not originally built by the supplying company. Main goal in remote monitoring is process optimization and avoiding unnecessary accidents. This can be achieved for instance by following the efficiency curves and fouling in different parts of the process and comparing them to past values. The final amount of calculations depends on the amount of data gathered. Sudden changes in efficiency or fouling require further notice and in such a case it’s important that dialogue toward the power plant in question also works.
Resumo:
To assess the clinical relevance of a semi-quantitative measurement of human cytomegalovirus (HCMV) DNA in renal transplant recipients within the typical clinical context of a developing country where virtually 100% of both receptors and donors are seropositive for this virus, we have undertaken HCMV DNA quantification using a simple, semi-quantitative, limiting dilution polymerase chain reaction (PCR). We evaluated this assay prospectively in 52 renal transplant patients from whom a total of 495 serial blood samples were collected. The samples scored HCMV positive by qualitative PCR had the levels of HCMV DNA determined by end-point dilution-PCR. All patients were HCMV DNA positive during the monitoring period and a diagnosis of symptomatic infection was made for 4 of 52 patients. In symptomatic patients the geometric mean of the highest level of HCMV DNAemia was 152,000 copies per 106 leukocytes, while for the asymptomatic group this value was 12,050. Symptomatic patients showed high, protracted HCMV DNA levels, whereas asymptomatic patients demonstrated intermittent low or moderate levels. Using a cut-off value of 100,000 copies per 106 leukocytes, the limiting dilution assay had sensitivity of 100%, specificity of 92%, a positive predictive value of 43% and a negative predictive value of 100% for HCMV disease. In this patient group, there was universal HCMV infection but relatively infrequent symptomatic HCMV disease. The two patient groups were readily distinguished by monitoring with the limiting dilution assay, an extremely simple technology immediately applicable in any clinical laboratory with PCR capability.
Resumo:
The Pasvik monitoring programme was created in 2006 as a result of the trilateral cooperation and with the intention of following changes in the environment under variable pollution levels. Water quality is one of the basic elements of the programme when assessing the effects of the emissions from the Pechenganikel mining end metallurgical industry (Kola GMK). In this report temporal trends of the water chemistry during 2000–2013 are examined on the basis of the data gathered from lake Inari, River Pasvik and directly connected lakes, Lake Kuetsjarvi and 25 small lakes in three areas: Pechenganikel (Russia), Jarfjord (Norway) and Vätsäri (Finland). The lower parts of the Pasvik watercourse are impacted by both atmospheric pollution and direct wastewater discharge from the Pechenganikel smelter and the settlement of Nikel. The upper section of the watercourse and the small lakes and streams which are not directly linked to the Pasvik Watercourse only receive atmospheric pollution. Lake Inari is free of direct emissions from the Pechenganikel and the water quality is excellent. In River Pasvik and the directly connected lakes copper, nickel, and sulphates are the main pollutants. The most polluted water body is the Kolosjoki River as well as the stream connecting the Lakes Salmijarvi and Kuetsjarvi. The concentration of metals and sulphates in the water notably increases downstream the river lower Lake Kuetsjarvi. In Lake Kuetsjarvi copper and nickel concentrations are clearly elevated and have changed insignificantly in the last years of the research period. In the small border area lakes recovery from acidification in Vätsäri and Jarfjord is evident. Nickel and copper oncentrations have fluctuated but remained on clearly elevated level in Jarfjord and Pechenga. Copper concentrations have been slightly rising in the recent years. In Pechenga area nickel concentrations during the last four monitoring years are decreasing in some places but the regional trend through whole time series is still positive.
Resumo:
Many studies have attempted to evaluate the importance of airborne fungi in the development of invasive fungal infection, especially for immunocompromised hosts. Several kinds of instruments are available to quantitate fungal propagule levels in air. We compared the performance of the most frequently used air sampler, the Andersen sampler with six stages, with a portable one, the Reuter centrifugal sampler (RCS). A total of 84 samples were analyzed, 42 with each sampler. Twenty-eight different fungal genera were identified in samples analyzed with the Andersen instrument. In samples obtained with the RCS only seven different fungal genera were identified. The three most frequently isolated genera in samples analyzed with both devices were Penicillium, Aspergillus and Cladophialophora. In areas supplied with a high efficiency particulate air filter, fungal spore levels were usually lower when compared to areas without these filters. There was a significant correlation between total fungal propagule measurements taken with both devices on each sampling occasion (Pearson coefficient = 0.50). However, the Andersen device recovered a broader spectrum of fungi. We conclude that the RCS can be used for quantitative estimates of airborne microbiological concentrations. For qualitative studies, however, this device cannot be recommended.