960 resultados para partial hyperbolicity
Resumo:
The equilibrium dissociation of recombinant human IFN-γ was monitored as a function of pressure and sucrose concentration. The partial molar volume change for dissociation was −209 ± 13 ml/mol of dimer. The specific molar surface area change for dissociation was 12.7 ± 1.6 nm2/molecule of dimer. The first-order aggregation rate of recombinant human IFN-γ in 0.45 M guanidine hydrochloride was studied as a function of sucrose concentration and pressure. Aggregation proceeded through a transition-state species, N*. Sucrose reduced aggregation rate by shifting the equilibrium between native state (N) and N* toward the more compact N. Pressure increased aggregation rate through increased solvation of the protein, which exposes more surface area, thus shifting the equilibrium away from N toward N*. The changes in partial molar volume and specific molar surface area between the N* and N were −41 ± 9 ml/mol of dimer and 3.5 ± 0.2 nm2/molecule, respectively. Thus, the structural change required for the formation of the transition state for aggregation is small relative to the difference between N and the dissociated state. Changes in waters of hydration were estimated from both specific molar surface area and partial molar volume data. From partial molar volume data, estimates were 25 and 128 mol H2O/mol dimer for formation of the aggregation transition state and for dissociation, respectively. From surface area data, estimates were 27 and 98 mol H2O/mol dimer. Osmotic stress theory yielded values ≈4-fold larger for both transitions.
Resumo:
Chloroplast-targeted overexpression of an Fe superoxide dismutase (SOD) from Arabidopsis thaliana resulted in substantially increased foliar SOD activities. Ascorbate peroxidase, glutathione reductase, and monodehydroascorbate reductase activities were similar in the leaves from all of the lines, but dehydroascorbate reductase activity was increased in the leaves of the FeSOD transformants relative to untransformed controls. Foliar H2O2, ascorbate, and glutathione contents were comparable in all lines of plants. Irradiance-dependent changes in net CO2 assimilation and chlorophyll a fluorescence quenching parameters were similar in all lines both in air (21% O2) and at low (1%) O2. CO2-response curves for photosynthesis showed similar net CO2-exchange characteristics in all lines. In contrast, values of photochemical quenching declined in leaves from untransformed controls at intercellular CO2 (Ci) values below 200 μL L−1 but remained constant with decreasing Ci in leaves of FeSOD transformants. When the O2 concentration was decreased from 21 to 1%, the effect of FeSOD overexpression on photochemical quenching at limiting Ci was abolished. At high light (1000 μmol m−2 s−1) a progressive decrease in the ratio of variable (Fv) to maximal (Fm) fluorescence was observed with decreasing temperature. At 6oC the high-light-induced decrease in the Fv/Fm ratio was partially prevented by low O2 but values were comparable in all lines. Methyl viologen caused decreased Fv/Fm ratios, but this was less marked in the FeSOD transformants than in the untransformed controls. These observations suggest that the rate of superoxide dismutation limits flux through the Mehler-peroxidase cycle in certain conditions.
Partial Purification and Characterization of the Maize Mitochondrial Pyruvate Dehydrogenase Complex1
Resumo:
The pyruvate dehydrogenase complex was partially purified and characterized from etiolated maize (Zea mays L.) shoot mitochondria. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed proteins of 40, 43, 52 to 53, and 62 to 63 kD. Immunoblot analyses identified these proteins as the E1β-, E1α-, E2-, and E3-subunits, respectively. The molecular mass of maize E2 is considerably smaller than that of other plant E2 subunits (76 kD). The activity of the maize mitochondrial complex has a pH optimum of 7.5 and a divalent cation requirement best satisfied by Mg2+. Michaelis constants for the substrates were 47, 3, 77, and 1 μm for pyruvate, coenzyme A (CoA), NAD+, and thiamine pyrophosphate, respectively. The products NADH and acetyl-CoA were competitive inhibitors with respect to NAD+ and CoA, and the inhibition constants were 15 and 47 μm, respectively. The complex was inactivated by phosphorylation and was reactivated after the removal of ATP and the addition of Mg2+.
Resumo:
A membrane preparation from tobacco (Nicotiana tabacum L.) cells contains at least one enzyme that is capable of transferring the methyl group from S-adenosyl-methionine (SAM) to the C6 carboxyl of homogalacturonan present in the membranes. This enzyme is named homogalacturonan-methyltransferase (HGA-MT) to distinguish it from methyltransferases that catalyze methyletherification of the pectic polysaccharides rhamnogalacturonan I or rhamnogalacturonan II. A trichloroacetic acid precipitation assay was used to measure HGA-MT activity, because published procedures to recover pectic polysaccharides via ethanol or chloroform:methanol precipitation lead to high and variable background radioactivity in the product pellet. Attempts to reduce the incorporation of the 14C-methyl group from SAM into pectin by the addition of the alternative methyl donor 5-methyltetrahydrofolate were unsuccessful, supporting the role of SAM as the authentic methyl donor for HGA-MT. The pH optimum for HGA-MT in membranes was 7.8, the apparent Michaelis constant for SAM was 38 μm, and the maximum initial velocity was 0.81 pkat mg−1 protein. At least 59% of the radiolabeled product was judged to be methylesterified homogalacturonan, based on the release of radioactivity from the product after a mild base treatment and via enzymatic hydrolysis by a purified pectin methylesterase. The released radioactivity eluted with a retention time identical to that of methanol upon fractionation over an organic acid column. Cleavage of the radiolabeled product by endopolygalacturonase into fragments that migrated as small oligomers of HGA during thin-layer chromatography, and the fact that HGA-MT activity in the membranes is stimulated by uridine 5′-diphosphate galacturonic acid, a substrate for HGA synthesis, confirms that the bulk of the product recovered from tobacco membranes incubated with SAM is methylesterified HGA.
Resumo:
Full activation of T cells requires signaling through the T-cell antigen receptor (TCR) and additional surface molecules interacting with ligands on the antigen-presenting cell. TCR recognition of agonist ligands in the absence of accessory signals frequently results in the induction of a state of unresponsiveness termed anergy. However, even in the presence of costimulation, anergy can be induced by TCR partial agonists. The unique pattern of early receptor-induced tyrosine phosphorylation events induced by partial agonists has led to the hypothesis that altered TCR signaling is directly responsible for the development of anergy. Here we show that anergy induction is neither correlated with nor irreversibly determined by the pattern of early TCR-induced phosphorylation. Rather, it appears to result from the absence of downstream events related to interleukin 2 receptor occupancy and/or cell division. This implies that the anergic state can be manipulated independently of the precise pattern of early biochemical changes following TCR occupancy, a finding with implications for understanding the induction of self-tolerance and the use of partial agonist ligands in the treatment of autoimmune diseases.
Resumo:
The condition termed 46,XY complete gonadal dysgenesis is characterized by a completely female phenotype and streak gonads. In contrast, subjects with 46,XY partial gonadal dysgenesis and those with embryonic testicular regression sequence usually present ambiguous genitalia and a mix of Müllerian and Wolffian structures. In 46,XY partial gonadal dysgenesis gonadal histology shows evidence of incomplete testis determination. In 46,XY embryonic testicular regression sequence there is lack of gonadal tissue on both sides. Various lines of evidence suggest that embryonic testicular regression sequence is a variant form of 46,XY gonadal dysgenesis. The sex-determining region Y chromosome gene (SRY) encodes sequences for the testis-determining factor. To date germ-line mutations in SRY have been reported in approximately 20% of subjects with 46,XY complete gonadal dysgenesis. However, no germ-line mutations of SRY have been reported in subjects with the partial forms. We studied 20 subjects who presented either 46,XY partial gonadal dysgenesis or 46,XY embryonic testicular regression sequence. We examined the SRY gene and the minimum region of Y-specific DNA known to confer a male phenotype. The SRY-open reading frame (ORF) was normal in all subjects. However a de novo interstitial deletion 3' to the SRY-ORF was found in one subject. Although it is possible that the deletion was unrelated to the subject's phenotype, we propose that the deletion was responsible for the abnormal gonadal development by diminishing expression of SRY. We suggest that the deletion resulted either in the loss of sequences necessary for normal SRY expression or in a position effect that altered SRY expression. This case provides further evidence that deletions of the Y chromosome outside the SRY-ORF can result in either complete or incomplete sex reversal.
Resumo:
In Escherichia coli and Salmonella typhimurium it has been shown that selenophosphate serves as the selenium donor for the conversion of seryl-tRNA to selenocysteyl-tRNA and for the synthesis of 2-selenouridine, a modified nucleoside present in tRNAs. Although selenocysteyl-tRNA also is formed in eukaryotes and is used for the specific insertion of selenocysteine into proteins, the precise mechanism of its biosynthesis from seryl-tRNA in these systems is not known. Because selenophosphate is extremely oxygen labile and difficult to identify in biological systems, we used an immunological approach to detect the possible presence of selenophosphate synthetase in mammalian tissues. With antibodies elicited to E. coli selenophosphate synthetase the enzyme was detected in extracts of rat brain, liver, kidney, and lung by immunoblotting. Especially high levels were detected in Methanococcus vannielii, a member of the domain Archaea, and the enzyme was partially purified from this source. It seems likely that the use of selenophosphate as a selenium donor is widespread in biological systems.
Resumo:
Disruption of retinoic acid receptor (RAR) gamma in F9 embryonal carcinoma cells leads to aberrent differentiation and reduced activation of expression of several all-trans-retinoic acid (RA)-induced genes. We have analyzed the expression of several additional RA-responsive genes in RAR alpha- and RAR gamma-null F9 cells. The RA-induced activation of Cdx1, Gap43, Stra4, and Stra6 was specifically impaired in RAR gamma-null cells, supporting the idea that each RAR may regulate distinct subsets of target genes. To further investigate the role of RAR gamma in F9 cell differentiation, "rescue" cell lines reexpressing RAR gamma 2 or overexpressing either RAR alpha 1 or RAR beta 2 were established in RAR gamma-null cells. Reexpression of RAR gamma or overexpression of RAR alpha restored both target-gene activation and the differentiation potential. In contrast, over-expression of RAR beta only poorly restored differentiation, although it could replace RAR gamma for the activation of target genes. Functional redundancy between the various RARs is discussed.
Resumo:
Grafts of favorable axonal growth substrates were combined with transient nerve growth factor (NGF) infusions to promote morphological and functional recovery in the adult rat brain after lesions of the septohippocampal projection. Long-term septal cholinergic neuronal rescue and partial hippocampal reinnervation were achieved, resulting in partial functional recovery on a simple task assessing habituation but not on a more complex task assessing spatial reference memory. Control animals that received transient NGF infusions without axonal-growth-promoting grafts lacked behavioral recovery but also showed long-term septal neuronal rescue. These findings indicate that (i) partial recovery from central nervous system injury can be induced by both preventing host neuronal loss and promoting host axonal regrowth and (ii) long-term neuronal loss can be prevented with transient NGF infusions.
Resumo:
Adenoviral vectors are widely used as highly efficient gene transfer vehicles in a variety of biological research strategies including human gene therapy. One of the limitations of the currently available adenoviral vector system is the presence of the majority of the viral genome in the vector, resulting in leaky expression of viral genes particularly at high multiplicity of infection and limited cloning capacity of exogenous sequences. As a first step to overcome this problem, we attempted to rescue a defective human adenovirus serotype 5 DNA, which had an essential region of the viral genome (L1, L2, VAI + II, pTP) deleted and replaced with an indicator gene. In the presence of wild-type adenovirus as a helper, this DNA was packaged and propagated as transducing viral particles. After several rounds of amplification, the titer of the recombinant virus reached at least 4 x 10(6) transducing particles per ml. The recombinant virus could be partially purified from the helper virus by CsCl equilibrium density-gradient centrifugation. The structure of the recombinant virus around the marker gene remained intact after serial propagation, while the pBR sequence inserted in the E1 region was deleted from the recombinant virus. Our results suggest that it should be possible to develop a helper-dependent adenoviral vector, which does not encode any viral proteins, as an alternative to the currently available adenoviral vector systems.
Resumo:
Purpose. Mice rendered hypoglycemic by a null mutation in the glucagon receptor gene Gcgr display late-onset retinal degeneration and loss of retinal sensitivity. Acute hyperglycemia induced by dextrose ingestion does not restore their retinal function, which is consistent with irreversible loss of vision. The goal of this study was to establish whether long-term administration of high dietary glucose rescues retinal function and circuit connectivity in aged Gcgr−/− mice. Methods. Gcgr−/− mice were administered a carbohydrate-rich diet starting at 12 months of age. After 1 month of treatment, retinal function and structure were evaluated using electroretinographic (ERG) recordings and immunohistochemistry. Results. Treatment with a carbohydrate-rich diet raised blood glucose levels and improved retinal function in Gcgr−/− mice. Blood glucose increased from moderate hypoglycemia to euglycemic levels, whereas ERG b-wave sensitivity improved approximately 10-fold. Because the b-wave reflects the electrical activity of second-order cells, we examined for changes in rod-to-bipolar cell synapses. Gcgr−/− retinas have 20% fewer synaptic pairings than Gcgr+/− retinas. Remarkably, most of the lost synapses were located farthest from the bipolar cell body, near the distal boundary of the outer plexiform layer (OPL), suggesting that apical synapses are most vulnerable to chronic hypoglycemia. Although treatment with the carbohydrate-rich diet restored retinal function, it did not restore these synaptic contacts. Conclusions. Prolonged exposure to diet-induced euglycemia improves retinal function but does not reestablish synaptic contacts lost by chronic hypoglycemia. These results suggest that retinal neurons have a homeostatic mechanism that integrates energetic status over prolonged periods of time and allows them to recover functionality despite synaptic loss.
Resumo:
The mechanical behaviour of transventilated façades performed by natural stone is necessarily based on the correct execution of both anchoring elements on the stone cladding as in the ones corresponding to the enclosure support, either with brick masonry walls or reinforced concrete walls. In the case studied in the present work, the origin of the damages suffered on the façade of a building located in Alcoy has been analyzed, where the detachment of part of the outer enclosure occurred. This enclosure is a transventilated façade formed by Bateig Blue stone tiles. To this end, “in situ” tests of the anchoring systems employed have been performed, as well as laboratory tests of mechanical characterization of the material and of different types of anchor, comparing these results with those obtained in both the simplified analytical models of continuum mechanics as developed by the Finite Element Method (FEM).
Resumo:
In this paper, we prove that infinite-dimensional vector spaces of α-dense curves are generated by means of the functional equations f(x)+f(2x)+⋯+f(nx)=0, with n≥2, which are related to the partial sums of the Riemann zeta function. These curves α-densify a large class of compact sets of the plane for arbitrary small α, extending the known result that this holds for the cases n=2,3. Finally, we prove the existence of a family of solutions of such functional equation which has the property of quadrature in the compact that densifies, that is, the product of the length of the curve by the nth power of the density approaches the Jordan content of the compact set which the curve densifies.
Resumo:
Mathematical programming can be used for the optimal design of shell-and-tube heat exchangers (STHEs). This paper proposes a mixed integer non-linear programming (MINLP) model for the design of STHEs, following rigorously the standards of the Tubular Exchanger Manufacturers Association (TEMA). Bell–Delaware Method is used for the shell-side calculations. This approach produces a large and non-convex model that cannot be solved to global optimality with the current state of the art solvers. Notwithstanding, it is proposed to perform a sequential optimization approach of partial objective targets through the division of the problem into sets of related equations that are easier to solve. For each one of these problems a heuristic objective function is selected based on the physical behavior of the problem. The global optimal solution of the original problem cannot be ensured even in the case in which each of the sub-problems is solved to global optimality, but at least a very good solution is always guaranteed. Three cases extracted from the literature were studied. The results showed that in all cases the values obtained using the proposed MINLP model containing multiple objective functions improved the values presented in the literature.
Resumo:
This paper proves that every zero of any n th , n ≥ 2, partial sum of the Riemann zeta function provides a vector space of basic solutions of the functional equation f(x)+f(2x)+⋯+f(nx)=0,x∈R . The continuity of the solutions depends on the sign of the real part of each zero.