963 resultados para near infrared spectroscopy, copper, arsenate, strashimirite, hydroxyl, molecular water


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le byssus est un amas de fibres que les moules produisent afin de s’ancrer aux surfaces immergées sous l’eau. Ces fibres sont pourvues de propriétés mécaniques impressionnantes combinant rigidité, élasticité et ténacité élevées. De plus, elles possèdent un comportement d’auto-guérison de leurs propriétés mécaniques en fonction du temps lorsque la contrainte initialement appliquée est retirée. Les propriétés mécaniques de ces fibres sont le résultat de l’agencement hiérarchique de protéines de type copolymère blocs riches en collagène et de la présence de métaux formant des liens sacrificiels réversibles avec certains acides aminés comme les DOPA et les histidines. Bien que cette fibre soit très intéressante pour la production de matériaux grâce à son contenu élevé en collagène potentiellement biocompatible, cette ressource naturelle est traitée comme un déchet par les mytiliculteurs. L’objectif de cette thèse était de valoriser cette fibre en extrayant les protéines pour générer une nouvelle classe de matériaux biomimétiques. Un hydrolysat de protéines de byssus (BPH) riche en acides aminés chargés, i.e. ~30 % mol, et permettant de former des films a pu être généré. Lorsque solubilisé à pH 10.5, le BPH forme un hydrogel contenant des structures en triple hélice de collagène et des feuillets β anti-parallèles intra- et inter-moléculaires. Suite à l’évaporation de l’eau, le film de BPH résultant est insoluble en milieu aqueux à cause des structures secondaires très stables agissant comme points de réticulation effectifs. Les propriétés mécaniques des films de BPH sont modulables en fonction du pH. Au point isoélectrique (pI = 4.5), les interactions électrostatiques entre les charges opposées agissent comme points de réticulation et augmentent la rigidité des films et leur contrainte à la rupture sans affecter la déformation à la rupture. À pH plus élevé ou plus bas que le pI, les performances mécaniques des films sont plus faibles à cause de la répulsion entre les groupements fonctionnels de même charge qui interagissent plutôt avec les molécules d’eau et causent le gonflement de la matrice protéique des films. Le BPH contenant un nombre élevé d’acides aminés chargés et réactifs, nous avons pu réticuler les films de manière covalente à l’aide d’EDC ou de glutaraldéhyde. Les propriétés mécaniques des films sont modulables en fonction de la concentration d’EDC utilisée lors de la réticulation ou en employant du glutaraldéhyde comme agent réticulant. Les films sont à la fois plus rigides et plus forts avec un degré de réticulation élevé, mais perdent leur extensibilité à mesure que les segments libres de s’étirer lors d’une traction deviennent entravés par les points de réticulation. La réticulation augmente également la résistance à la dégradation enzymatique par la collagénase, les films les plus fortement réticulés lui étant pratiquement insensibles. La spectroscopie infrarouge montre enfin que la réticulation entraîne une transition de feuillets β anti-parallèles inter-moléculaires vers des structures de type hélices de collagène/PPII hydratées. Des liens sacrificiels ont été formés dans les films de BPH par traitement au pI et/ou avec différents métaux, i.e. Na+, Ca2+, Fe3+, afin de moduler les propriétés mécaniques statiques et d’évaluer le rôle de ces traitements sur le comportement d’auto-guérison lors de tests mécaniques cycliques avec différents temps de repos. Plus la valence des ions métalliques ajoutés augmente, plus les propriétés mécaniques statiques affichent un module, une contrainte à la rupture et une ténacité élevés sans toutefois affecter la déformation à la rupture, confirmant la formation de liens sacrificiels. Les tests mécaniques cycliques montrent que les traitements au pI ou avec Ca2+ créent des liens sacrificiels ioniques réversibles qui mènent à un processus d’auto-guérison des performances mécaniques dépendant du pH. L’ajout de Fe3+ à différentes concentrations module les performances mécaniques sur un plus large intervalle et la nature plus covalente de son interaction avec les acides aminés permet d’atteindre des valeurs nettement plus élevées que les autres traitements étudiés. Le Fe3+ permet aussi la formation de liens sacrificiels réversibles menant à l’auto-guérison des propriétés mécaniques. Les spectroscopies Raman et infrarouge confirment que le fer crée des liaisons avec plusieurs acides aminés, dont les histidines et les DOPA. Les résultats dans leur ensemble démontrent que les films de BPH sont des hydrogels biomimétiques du byssus qui peuvent être traités ou réticulés de différentes façons afin de moduler leurs performances mécaniques. Ils pourraient ainsi servir de matrices pour des applications potentielles dans le domaine pharmaceutique ou en ingénierie tissulaire.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

heterogeneous catalyst such as a silicoaluminophosphate, molecular sieve with AEL (Aluminophosphate eleven) structure such as SAPO-11, was synthesized through the hydrothermal method starting from silica, pseudoboehmite, orthophosphoric acid (85%) and water, in the presence of a di-isopropylamine organic template. For the preparation of SAPO-11 in a dry basis it was used as reactants: DIPA; H3PO4; SiO4; Pseudoboehmite and distilled water. The crystallization process occurred when the reactive hydrogel was charged into a vessel and autoclaved at 200ºC for a period of 72 hours under autogeneous pressure. The obtained material was washed, dried and calcined to remove the molecular sieves of DIPA. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), infrared spectroscopy (FT-IR), nitrogen adsorption (BET) and thermal analysis (TG/DTG). The acidic properties were determined using adsorption of nbutylamine followed by programmed thermodessorption. This method revealed that SAPO-11 shows an acidity that ranges from weak to moderate. However, a small quantity of strong acid sites could be detected there. The deactivation of the catalysts was conducted by artificial coking followed by the cracking of the n-hexane in a fixed bed with a continuous flow micro-reactor coupled on line to a gas chromatograph. The main products obtained were: ethane, propane, isobutene, n-butane, n-pentane and isopentane. The Vyazovkin (model-free) kinetics method was used to determine the regeneration and removal of the coke

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inorganic pigment comprises a host lattice, which is part of the chromophore component (usually a transition metal cation) and possible components modifiers, which stabilize, add or restate the properties pigments. Among the materials with spinel, ferrites, and the chromite stand out, because they have broad technological importance in the area of materials, applicability, pigments, catalytic hydrogenation, thin film, ceramic tiles, among others. The present work, pigments containing CuFe2O4, CuCr2O4,e CuFeCrO4, were synthesized by a method that makes use of gelatin as organic precursor using their application to ceramic pigments. The pigments were characterized by X-ray diffraction (XRD), Infrared spectroscopy, scanning electron microscopy (SEM) spectroscopy in the UV-visible and Colorimetry. The results confirmed the feasibility of the synthetic route used, with respect to powders synthesized, there is the formation of spinel phase from 500°C, with an increase in crystallinity and the formation of other phases. The pigments were shown to be crystalline and the desired phases were obtained. The copper chromite have hues ranging from green to black according to the calcination temperature, while the copper chromite doped with iron had brownish. The ferrites showed copper color and darker brown to black, which may indicate an interesting factor because of the importance of black pigment

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mesoporous molecular sieves of the MCM-41 and FeMCM-41 type are considered promissory as support for metals used as catalysts in oil-based materials refine processes and as adsorbents for environmental protection proposes. In this work MCM-41 and FeMCM41 were synthesized using rice husk ash - RHA as alternative to the conventional silica source. Hydrothermal synthesis was the method chosen to prepare the materials. Pre-defined synthesis parameters were 100°C for 168 hours, later the precursor was calcinated at 550°C for 2 hours under nitrogen and air flow. The sieves containing different proportions of iron were produced by two routes: introduction of iron salt direct synthesis; and a modification post synthesis consisting in iron salt 1 % and 5% impregnation in the material followed by thermal decomposition. The molecular sieves were characterized by X ray diffraction XRD, Fourier transform infrared spectroscopy FT-IR, X ray fluorescence spectroscopy XFR, scanning electronic microscopy SEM, specific surface area using the BET method, Termogravimetry TG. The kinetic model of Flynn Wall was used with the aim of determining the apparent activation energy of the surfactant remove (CTMABr) in the MCM- 41 porous. The analysis made possible the morphology characterization, identifying the presence of hexagonal structure typical for mesoporous materials, as well as observation of the MCM41 and iron of characteristic bands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural changes in waste for zeolites synthesis are subject of many studies carried out in the synthesis of molecular sieves. These materials are named molecular sieves because they have well defined pore sizes and they have the capacity of select molecules by its size. In this work, it was studied the synthesis processes of two types of molecular sieves: pillared acid clays using as starting material one natural montmorillonite clay and the synthesis of zeolites from a silico-aluminous residue. This residue is a byproduct of the extraction of lithium -spodumene. The preparation of pillared acid clays was performed in two steps: 1° acid treatment of clay samples (time and temperature studies) and 2°pilarization of them with Al13 (Keggin ion). The temperature and acid concentration affect the removal of cations in the structure and porosity of the material obtained. The analysis of X-ray diffraction (XRD) and infrared spectroscopy (IR), showed that increasing the severity of the acid treatment compromises the structural material. Also the pore size distribution is approximately uniform. Despite presenting a structural disorganization, the samples were pillared. As evidenced by XRD increasing the basal spacing, specific area and uniform porosity by adsorption of N2. Regarding the microporous molecular sieves were synthesized zeolites A and NaP1 from a silico-aluminous residue, a byproduct of extracting lithium. The temperature and time of agitation during the synthesis were the most important factors for obtaining zeolite A. The aging of the gel and the highest crystallization time promoted the formation of zeolite NaP1 using a Si / Al ratio = 3.2

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of raw materials from renewable sources for production of materials has been the subject of several studies and researches, because of its potential to substitute petrochemical-based materials. The addition of natural fibers to polymers represents an alternative in the partial or total replacement of glass fibers in composites. In this work, carnauba leaf fibers were used in the production of biodegradable composites with polyhydroxybutyrate (PHB) matrix. To improve the interfacial properties fiber / matrix were studied four chemical treatments to the fibers..The effect of the different chemical treatments on the morphological, physical, chemical and mechanical properties of the fibers and composites were investigated by scanning electron microscopy (SEM), infrared spectroscopy, X-ray diffraction, tensile and flexural tests, dynamic mechanical analysis (DMA), thermogravimetry (TGA) and diferential scanning calorimetry (DSC). The results of tensile tests indicated an increase in tensile strength of the composites after the chemical treatment of the fibers, with best results for the hydrogen peroxide treated fibers, even though the tensile strength of fibers was slightly reduced. This suggests a better interaction fiber/matrix which was also observed by SEM fractographs. The glass transition temperature (Tg) was reduced for all composites compared to the pure polymer which can be attributed to the absorption of solvents, moisture and other low molecular weight molecules by the fibers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research and development of nanostructured materials have been growing significantly in the last years. These materials have properties that were significantly modified as compared to conventional materials due to the extremely small dimensions of the crystallites. The tantalum carbide (TaC) is an extremely hard material that has high hardness, high melting point, high chemical stability, good resistance to chemical attack and thermal shock and excellent resistance to oxidation and corrosion. The Compounds of Tantalum impregnated with copper also have excellent dielectric and magnetic properties. Therefore, this study aimed to obtain TaC and mixed tantalum oxide and nanostructured copper from the precursor of tris (oxalate) hydrate ammonium oxitantalato, through gas-solid reaction and solid-solid respectively at low temperature (1000 ° C) and short reaction time. The materials obtained were characterized by X-ray diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), Spectroscopy X-Ray Fluorescence (XRF), infrared spectroscopy (IR), thermogravimetric (TG), thermal analysis (DTA) and BET. Through the XRD analyses and the Reitiveld refinement of the TaC with S = 1.1584, we observed the formation of pure tantalum carbide and cubic structure with average crystallite size on the order of 12.5 nanometers. From the synthesis made of mixed oxide of tantalum and copper were formed two distinct phases: CuTa10O26 and Ta2O5, although the latter has been formed in lesser amounts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese dout. em Química, Unidade de Ciências Exactas e Humanas, Univ. do Algarve, 1997

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The refractory metal carbides have proven important in the development of engineering materials due to their properties such as high hardness, high melting point, high thermal conductivity and high chemical stability. The niobium carbide presents these characteristics. The compounds of niobium impregnated with copper also have excellent dielectric and magnetic properties, and furthermore, the Cu doping increases the catalytic activity in the oxidation processes of hydrogen. This study aimed to the synthesis of nanostructured materials CuNbC and niobium and copper oxide from precursor tris(oxalate) oxiniobate ammonium hydrate through gas-solid and solid-solid reaction, respectively. Both reactions were carried out at low temperature (1000°C) and short reaction time (2 hours). The niobium carbide was produced with 5 % and 11% of copper, and the niobium oxide with 5% of copper. The materials were characterized by X-Ray Diffraction (XRD), Rietveld refinement, Scanning Electron Microscopy (SEM), X-Ray Fluorescence Spectroscopy (XRF), infrared spectroscopy (IR), thermogravimetric (TG) and differential thermal analysis (DTA , BET and particle size Laser. From the XRD analysis and Rietveld refinement of CuNbC with S = 1.23, we observed the formation of niobium carbide and metallic copper with cubic structure. For the synthesis of mixed oxide made of niobium and copper, the formation of two distinct phases was observed: CuNb2O6 and Nb2O5, although the latter was present in small amounts

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The environmental impact caused by the disposal of non-biodegradable polymer packaging on the environment, as well as the high price and scarcity of oil, caused increase of searches in the area of biodegradable polymers from renewable resources were developed. The poly (lactic acid) (PLA) is a promising polymer in the market, with a large availability of raw material for the production of its monomer, as well as good processability. The aimed of this study was synthesis PLA by direct polycondesation of lactic acid, using the tool of experimental design (DOE) (central composite rotatable design (CCRD)) to optimize the conditions of synthesis. The polymer obtained was characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), viscosimetric analysis, differential scanning calorimeter (DSC) and size exclusion chromatography (SEC). The results confirmed the formation of a poly (lactic acid) semicrystalline in the syntheses performed. Through the central composite rotatable design was possible to optimize the crystallization temperature (Tc) and crystallinity degree (Xc). The crystallization temperature maximum was found for percentage of catalyst around the central point (0,3 (%W)) and values of time ranging from the central point (6h) to the upper level (+1) (8h). The crystallization temperature maximum was found for the total synthesis time of 4h (-1) and percentage of catalyst 0,1(W%) (-1). The results of size exclusion chromatography (SEC) showed higher molecular weights to 0,3 (W%) percent of catalyst and total time synthesis of 3,2h

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The authors discuss and demonstrate the growth of InN surface quantum dots on a high-In-content In0.73Ga0.27N layer, directly on a Si(111) substrate by plasma-assisted molecular beam epitaxy. Atomic force microscopy and transmission electron microscopy reveal uniformly distributed quantum dots with diameters of 10–40 nm, heights of 2–4 nm, and a relatively low density of ∼7 × 109 cm−2. A thin InN wetting layer below the quantum dots proves the Stranski-Krastanov growth mode. Near-field scanning optical microscopy shows distinct and spatially well localized near-infrared emission from single surface quantum dots. This holds promise for future telecommunication and sensing devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The production of synthesis gas has received renewed attention due to demand for renewable energies to reduce the emissions of gases responsible for enhanced greenhouse effect. This work was carried out in order to synthesize, characterize and evaluate the implementation of nickel catalysts on MCM-41 in dry reforming reactions of methane. The mesoporous molecular sieves were synthesized using as silica sources the tetraethyl orthosilicate (TEOS) and residual glass powder (PV). The sieves were impregnated with 10% nickel to obtain the metallic catalysts (Ni/MCM-41). These materials were calcined and characterized by Thermogravimetric Analysis (TG), Infrared spectroscopy (FTIR), X-ray Diffraction (XRD), Temperature-Programmed Reduction (TPR) and N2 Adsorption/Desorption isotherms (BET/BJH). The catalytic properties of the samples were evaluated in methane dry reforming with CO2 in order to produce synthesis gas to be used in the petrochemical industry. The materials characterized showed hexagonal structure characteristic of mesoporous material MCM-41 type, being maintained after impregnation with nickel. The samples presented variations in the specific surface area, average volume and diameter of pores based on the type of interaction between the nickel and the mesoporous support. The result of the the catalytic tests showed conversions about 91% CO2, 86% CH4, yelds about 85% CO and 81% H2 to Ni/MCM-41_TEOS_C, and conversions about 87% CO2, 82% CH4, yelds about 70% CO and 59% H2 to Ni/MCM-41_PV_C. The similar performance confirms that the TEOS can be replaced by a less noble materials

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the first description of sulfated polysaccharides from seaweeds, the biological activities of these compounds have been evaluated under different aspects and experimental procedures. Among the broad biological activities presented by seaweed polysaccharides, anticoagulant action appears as a promising function. In this present study we have obtained sulfated polysaccharides from the green seaweed Codium isthmocladium by proteolytic digestion, followed by separation into five fractions (0.3, 0.5, 0.7, 0.9 and 1.2) by sequential acetone precipitation. The chemical analyses have demonstrated that all fractions are composed mainly by sulfated polysaccharides. The anticoagulant activity of these fractions was determined by activated partial thromboplastin time (aPTT) and prothrombin time test (PT) using citrate normal human plasma. None fraction has shown anticoagulant activity by PT test. Furthermore, all of them have shown anticoagulant activity by aPTT test. These results indicated that the molecular targets of these sulfated polysaccharides are mainly in the intrinsic via of the coagulation cascade. Agarose gel electrophoresis in 1,3-diaminopropane acetate buffer, pH 9.0, stained with 0.1% toluidine blue showed the presence of two or three bands in several fractions while the fraction 0.9 showed a single spot. By anion exchange chromatography, the acid polysaccharides from the 0.9 acetone fraction were separated into two new fractions eluted respectively with 2.0 and 3.0 M NaCl. These compounds showed a molecular weight of 6.4 and 7.4 kDa respectively. Chemical analyses and infrared spectroscopy showed that Gal 1 and Gal 2 are sulfated homogalactans and differ one from the other in degree and localization of sulfate groups. aPPT test demonstrated that fractions 2,0 and 3,0M (Gal1 and Gal 2, respectively) have anticoagulant activity. This is the first time that anticoagulant sulfated homogalatans have been isolated from green algae. To prolong the coagulation time to double the baseline value in the aPTT, the required amount of sulfated galactan 1 (6,3mg) was similar to low molecular heparin Clexane®, whereas only 0,7mg of sulfated galactan 2 was needed to obtain the same effect. Sulfated galactan 2 in high doses (250mg) induces platelet aggregation. These results suggest that these galactans from C. isthmocladum have a potential application as an anticoagulant drug

Relevância:

100.00% 100.00%

Publicador:

Resumo:

“Seeing is believing” the proverb well suits for fluorescent imaging probes. Since we can selectively and sensitively visualize small biomolecules, organelles such as lysosomes, neutral molecules, metal ions, anions through cellular imaging, fluorescent probes can help shed light on the physiological and pathophysiological path ways. Since these biomolecules are produced in low concentrations in the biochemical pathways, general analytical techniques either fail to detect or are not sensitive enough to differentiate the relative concentrations. During my Ph.D. study, I exploited synthetic organic techniques to design and synthesize fluorescent probes with desirable properties such as high water solubility, high sensitivity and with varying fluorescent quantum yields. I synthesized a highly water soluble BOIDPY-based turn-on fluorescent probe for endogenous nitric oxide. I also synthesized a series of cell membrane permeable near infrared (NIR) pH activatable fluorescent probes for lysosomal pH sensing. Fluorescent dyes are molecular tools for designing fluorescent bio imaging probes. This prompted me to design and synthesize a hybrid fluorescent dye with a functionalizable chlorine atom and tested the chlorine re-activity for fluorescent probe design. Carbohydrate and protein interactions are key for many biological processes, such as viral and bacterial infections, cell recognition and adhesion, and immune response. Among several analytical techniques aimed to study these interactions, electrochemical bio sensing is more efficient due to its low cost, ease of operation, and possibility for miniaturization. During my Ph.D., I synthesized mannose bearing aniline molecule which is successfully tested as electrochemical bio sensor. A Ferrocene-mannose conjugate with an anchoring group is synthesized, which can be used as a potential electrochemical biosensor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unique properties of carbon nanotubes have made them the material of choice for many current and future industrial applications. As a consequence of the increasing development of nanotechnology, carbon nanotubes show potential threat to health and environment. Therefore, development of efficient method for detection of carbon nanotubes is required. In this work, we have studied the interaction of indopentamethinedioxaborine dye (DOB-719) and single-walled carbon nanotubes (SWNTs) using absorption and photoluminescence (PL) spectroscopy. In the mixture of the dye and the SWNTs we have revealed new optical features in the spectral range of the intrinsic excitation of the dye due to resonance energy transfer from DOB-719 to SWNTs. Specifically, we have observed an emergence of new PL peaks at the excitation wavelength of 735 nm and a redshift of the intrinsic PL peaks of SWNT emission (up to 40 nm) in the near-infrared range. The possible mechanism of the interaction between DOB-719 and SWNTs has been proposed. Thus, it can be concluded that DOB-719 dye has promising applications for designing efficient and tailorable optical probes for the detection of SWNTs.