975 resultados para markov chains monte carlo methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work we compared the estimates of the parameters of ARCH models using a complete Bayesian method and an empirical Bayesian method in which we adopted a non-informative prior distribution and informative prior distribution, respectively. We also considered a reparameterization of those models in order to map the space of the parameters into real space. This procedure permits choosing prior normal distributions for the transformed parameters. The posterior summaries were obtained using Monte Carlo Markov chain methods (MCMC). The methodology was evaluated by considering the Telebras series from the Brazilian financial market. The results show that the two methods are able to adjust ARCH models with different numbers of parameters. The empirical Bayesian method provided a more parsimonious model to the data and better adjustment than the complete Bayesian method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is based on five papers addressing variance reduction in different ways. The papers have in common that they all present new numerical methods. Paper I investigates quantitative structure-retention relationships from an image processing perspective, using an artificial neural network to preprocess three-dimensional structural descriptions of the studied steroid molecules. Paper II presents a new method for computing free energies. Free energy is the quantity that determines chemical equilibria and partition coefficients. The proposed method may be used for estimating, e.g., chromatographic retention without performing experiments. Two papers (III and IV) deal with correcting deviations from bilinearity by so-called peak alignment. Bilinearity is a theoretical assumption about the distribution of instrumental data that is often violated by measured data. Deviations from bilinearity lead to increased variance, both in the data and in inferences from the data, unless invariance to the deviations is built into the model, e.g., by the use of the method proposed in paper III and extended in paper IV. Paper V addresses a generic problem in classification; namely, how to measure the goodness of different data representations, so that the best classifier may be constructed. Variance reduction is one of the pillars on which analytical chemistry rests. This thesis considers two aspects on variance reduction: before and after experiments are performed. Before experimenting, theoretical predictions of experimental outcomes may be used to direct which experiments to perform, and how to perform them (papers I and II). After experiments are performed, the variance of inferences from the measured data are affected by the method of data analysis (papers III-V).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To aid the design of organic semiconductors, we study the charge transport properties of organic liquid crystals, i.e. hexabenzocoronene and carbazole macrocycle, and single crystals, i.e. rubrene, indolocarbazole and benzothiophene derivatives (BTBT, BBBT). The aim is to find structure-property relationships linking the chemical structure as well as the morphology with the bulk charge carrier mobility of the compounds. To this end, molecular dynamics (MD) simulations are performed yielding realistic equilibrated morphologies. Partial charges and molecular orbitals are calculated based on single molecules in vacuum using quantum chemical methods. The molecular orbitals are then mapped onto the molecular positions and orientations, which allows calculation of the transfer integrals between nearest neighbors using the molecular orbital overlap method. Thus we obtain realistic transfer integral distributions and their autocorrelations. In case of organic crystals the differences between two descriptions of charge transport, namely semi-classical dynamics (SCD) in the small polaron limit and kinetic Monte Carlo (KMC) based on Marcus rates, are studied. The liquid crystals are investigated solely in the hopping limit. To simulate the charge dynamics using KMC, the centers of mass of the molecules are mapped onto lattice sites and the transfer integrals are used to compute the hopping rates. In the small polaron limit, where the electronic wave function is spread over a limited number of neighboring molecules, the Schroedinger equation is solved numerically using a semi-classical approach. The results are compared for the different compounds and methods and, where available, with experimental data. The carbazole macrocycles form columnar structures arranged on a hexagonal lattice with side chains facing inwards, so columns can closely approach each other allowing inter-columnar and thus three-dimensional transport. When taking only intra-columnar transport into account, the mobility is orders of magnitude lower than in the three-dimensional case. BTBT is a promising material for solution-processed organic field-effect transistors. We are able to show that, on the time-scales of charge transport, static disorder due to slow side chain motions is the main factor determining the mobility. The resulting broad transfer integral distributions modify the connectivity of the system but sufficiently many fast percolation paths remain for the charges. Rubrene, indolocarbazole and BBBT are examples of crystals without significant static disorder. The high mobility of rubrene is explained by two main features: first, the shifted cofacial alignment of its molecules, and second, the high center of mass vibrational frequency. In comparsion to SCD, only KMC based on Marcus rates is capable of describing neighbors with low coupling and of taking static disorder into account three-dimensionally. Thus it is the method of choice for crystalline systems dominated by static disorder. However, it is inappropriate for the case of strong coupling and underestimates the mobility of well-ordered crystals. SCD, despite its one-dimensionality, is valuable for crystals with strong coupling and little disorder. It also allows correct treatment of dynamical effects, such as intermolecular vibrations of the molecules. Rate equations are incapable of this, because simulations are performed on static snapshots. We have thus shown strengths and weaknesses of two state of the art models used to study charge transport in organic compounds, partially developed a program to compute and visualize transfer integral distributions and other charge transport properties, and found structure-mobility relations for several promising organic semiconductors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ability of block copolymers to spontaneously self-assemble into a variety of ordered nano-structures not only makes them a scientifically interesting system for the investigation of order-disorder phase transitions, but also offers a wide range of nano-technological applications. The architecture of a diblock is the most simple among the block copolymer systems, hence it is often used as a model system in both experiment and theory. We introduce a new soft-tetramer model for efficient computer simulations of diblock copolymer melts. The instantaneous non-spherical shape of polymer chains in molten state is incorporated by modeling each of the two blocks as two soft spheres. The interactions between the spheres are modeled in a way that the diblock melt tends to microphase separate with decreasing temperature. Using Monte Carlo simulations, we determine the equilibrium structures at variable values of the two relevant control parameters, the diblock composition and the incompatibility of unlike components. The simplicity of the model allows us to scan the control parameter space in a completeness that has not been reached in previous molecular simulations.The resulting phase diagram shows clear similarities with the phase diagram found in experiments. Moreover, we show that structural details of block copolymer chains can be reproduced by our simple model.We develop a novel method for the identification of the observed diblock copolymer mesophases that formalizes the usual approach of direct visual observation,using the characteristic geometry of the structures. A cluster analysis algorithm is used to determine clusters of each component of the diblock, and the number and shape of the clusters can be used to determine the mesophase.We also employ methods from integral geometry for the identification of mesophases and compare their usefulness to the cluster analysis approach.To probe the properties of our model in confinement, we perform molecular dynamics simulations of atomistic polyethylene melts confined between graphite surfaces. The results from these simulations are used as an input for an iterative coarse-graining procedure that yields a surface interaction potential for the soft-tetramer model. Using the interaction potential derived in that way, we perform an initial study on the behavior of the soft-tetramer model in confinement. Comparing with experimental studies, we find that our model can reflect basic features of confined diblock copolymer melts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Changepoint analysis is a well established area of statistical research, but in the context of spatio-temporal point processes it is as yet relatively unexplored. Some substantial differences with regard to standard changepoint analysis have to be taken into account: firstly, at every time point the datum is an irregular pattern of points; secondly, in real situations issues of spatial dependence between points and temporal dependence within time segments raise. Our motivating example consists of data concerning the monitoring and recovery of radioactive particles from Sandside beach, North of Scotland; there have been two major changes in the equipment used to detect the particles, representing known potential changepoints in the number of retrieved particles. In addition, offshore particle retrieval campaigns are believed may reduce the particle intensity onshore with an unknown temporal lag; in this latter case, the problem concerns multiple unknown changepoints. We therefore propose a Bayesian approach for detecting multiple changepoints in the intensity function of a spatio-temporal point process, allowing for spatial and temporal dependence within segments. We use Log-Gaussian Cox Processes, a very flexible class of models suitable for environmental applications that can be implemented using integrated nested Laplace approximation (INLA), a computationally efficient alternative to Monte Carlo Markov Chain methods for approximating the posterior distribution of the parameters. Once the posterior curve is obtained, we propose a few methods for detecting significant change points. We present a simulation study, which consists in generating spatio-temporal point pattern series under several scenarios; the performance of the methods is assessed in terms of type I and II errors, detected changepoint locations and accuracy of the segment intensity estimates. We finally apply the above methods to the motivating dataset and find good and sensible results about the presence and quality of changes in the process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this thesis is the acceleration of numerical calculations of QCD observables, both at leading order and next–to–leading order in the coupling constant. In particular, the optimization of helicity and spin summation in the context of VEGAS Monte Carlo algorithms is investigated. In the literature, two such methods are mentioned but without detailed analyses. Only one of these methods can be used at next–to–leading order. This work presents a total of five different methods that replace the helicity sums with a Monte Carlo integration. This integration can be combined with the existing phase space integral, in the hope that this causes less overhead than the complete summation. For three of these methods, an extension to existing subtraction terms is developed which is required to enable next–to–leading order calculations. All methods are analyzed with respect to efficiency, accuracy, and ease of implementation before they are compared with each other. In this process, one method shows clear advantages in relation to all others.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In condensed matter systems, the interfacial tension plays a central role for a multitude of phenomena. It is the driving force for nucleation processes, determines the shape and structure of crystalline structures and is important for industrial applications. Despite its importance, the interfacial tension is hard to determine in experiments and also in computer simulations. While for liquid-vapor interfacial tensions there exist sophisticated simulation methods to compute the interfacial tension, current methods for solid-liquid interfaces produce unsatisfactory results.rnrnAs a first approach to this topic, the influence of the interfacial tension on nuclei is studied within the three-dimensional Ising model. This model is well suited because despite its simplicity, one can learn much about nucleation of crystalline nuclei. Below the so-called roughening temperature, nuclei in the Ising model are not spherical anymore but become cubic because of the anisotropy of the interfacial tension. This is similar to crystalline nuclei, which are in general not spherical but more like a convex polyhedron with flat facets on the surface. In this context, the problem of distinguishing between the two bulk phases in the vicinity of the diffuse droplet surface is addressed. A new definition is found which correctly determines the volume of a droplet in a given configuration if compared to the volume predicted by simple macroscopic assumptions.rnrnTo compute the interfacial tension of solid-liquid interfaces, a new Monte Carlo method called ensemble switch method'' is presented which allows to compute the interfacial tension of liquid-vapor interfaces as well as solid-liquid interfaces with great accuracy. In the past, the dependence of the interfacial tension on the finite size and shape of the simulation box has often been neglected although there is a nontrivial dependence on the box dimensions. As a consequence, one needs to systematically increase the box size and extrapolate to infinite volume in order to accurately predict the interfacial tension. Therefore, a thorough finite-size scaling analysis is established in this thesis. Logarithmic corrections to the finite-size scaling are motivated and identified, which are of leading order and therefore must not be neglected. The astounding feature of these logarithmic corrections is that they do not depend at all on the model under consideration. Using the ensemble switch method, the validity of a finite-size scaling ansatz containing the aforementioned logarithmic corrections is carefully tested and confirmed. Combining the finite-size scaling theory with the ensemble switch method, the interfacial tension of several model systems, ranging from the Ising model to colloidal systems, is computed with great accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simulation model adopting a health system perspective showed population-based screening with DXA, followed by alendronate treatment of persons with osteoporosis, or with anamnestic fracture and osteopenia, to be cost-effective in Swiss postmenopausal women from age 70, but not in men. INTRODUCTION: We assessed the cost-effectiveness of a population-based screen-and-treat strategy for osteoporosis (DXA followed by alendronate treatment if osteoporotic, or osteopenic in the presence of fracture), compared to no intervention, from the perspective of the Swiss health care system. METHODS: A published Markov model assessed by first-order Monte Carlo simulation was refined to reflect the diagnostic process and treatment effects. Women and men entered the model at age 50. Main screening ages were 65, 75, and 85 years. Age at bone densitometry was flexible for persons fracturing before the main screening age. Realistic assumptions were made with respect to persistence with intended 5 years of alendronate treatment. The main outcome was cost per quality-adjusted life year (QALY) gained. RESULTS: In women, costs per QALY were Swiss francs (CHF) 71,000, CHF 35,000, and CHF 28,000 for the main screening ages of 65, 75, and 85 years. The threshold of CHF 50,000 per QALY was reached between main screening ages 65 and 75 years. Population-based screening was not cost-effective in men. CONCLUSION: Population-based DXA screening, followed by alendronate treatment in the presence of osteoporosis, or of fracture and osteopenia, is a cost-effective option in Swiss postmenopausal women after age 70.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A high-resolution α, x-ray, and γ-ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum für Schwerionenforschung. Thirty correlated α-decay chains were detected following the fusion-evaporation reaction Ca48+Am243. The observations are consistent with previous assignments of similar decay chains to originate from element Z=115. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z>112. Comprehensive Monte Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium levels in spines play a significant role in determining the sign and magnitude of synaptic plasticity. The magnitude of calcium influx into spines is highly dependent on influx through N-methyl D-aspartate (NMDA) receptors, and therefore depends on the number of postsynaptic NMDA receptors in each spine. We have calculated previously how the number of postsynaptic NMDA receptors determines the mean and variance of calcium transients in the postsynaptic density, and how this alters the shape of plasticity curves. However, the number of postsynaptic NMDA receptors in the postsynaptic density is not well known. Anatomical methods for estimating the number of NMDA receptors produce estimates that are very different than those produced by physiological techniques. The physiological techniques are based on the statistics of synaptic transmission and it is difficult to experimentally estimate their precision. In this paper we use stochastic simulations in order to test the validity of a physiological estimation technique based on failure analysis. We find that the method is likely to underestimate the number of postsynaptic NMDA receptors, explain the source of the error, and re-derive a more precise estimation technique. We also show that the original failure analysis as well as our improved formulas are not robust to small estimation errors in key parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation, we propose a continuous-time Markov chain model to examine the longitudinal data that have three categories in the outcome variable. The advantage of this model is that it permits a different number of measurements for each subject and the duration between two consecutive time points of measurements can be irregular. Using the maximum likelihood principle, we can estimate the transition probability between two time points. By using the information provided by the independent variables, this model can also estimate the transition probability for each subject. The Monte Carlo simulation method will be used to investigate the goodness of model fitting compared with that obtained from other models. A public health example will be used to demonstrate the application of this method. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Several meta-analysis methods can be used to quantitatively combine the results of a group of experiments, including the weighted mean difference, statistical vote counting, the parametric response ratio and the non-parametric response ratio. The software engineering community has focused on the weighted mean difference method. However, other meta-analysis methods have distinct strengths, such as being able to be used when variances are not reported. There are as yet no guidelines to indicate which method is best for use in each case. Aim: Compile a set of rules that SE researchers can use to ascertain which aggregation method is best for use in the synthesis phase of a systematic review. Method: Monte Carlo simulation varying the number of experiments in the meta analyses, the number of subjects that they include, their variance and effect size. We empirically calculated the reliability and statistical power in each case Results: WMD is generally reliable if the variance is low, whereas its power depends on the effect size and number of subjects per meta-analysis; the reliability of RR is generally unaffected by changes in variance, but it does require more subjects than WMD to be powerful; NPRR is the most reliable method, but it is not very powerful; SVC behaves well when the effect size is moderate, but is less reliable with other effect sizes. Detailed tables of results are annexed. Conclusions: Before undertaking statistical aggregation in software engineering, it is worthwhile checking whether there is any appreciable difference in the reliability and power of the methods. If there is, software engineers should select the method that optimizes both parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis aims to introduce some fundamental concepts underlying option valuation theory including implementation of computational tools. In many cases analytical solution for option pricing does not exist, thus the following numerical methods are used: binomial trees, Monte Carlo simulations and finite difference methods. First, an algorithm based on Hull and Wilmott is written for every method. Then these algorithms are improved in different ways. For the binomial tree both speed and memory usage is significantly improved by using only one vector instead of a whole price storing matrix. Computational time in Monte Carlo simulations is reduced by implementing a parallel algorithm (in C) which is capable of improving speed by a factor which equals the number of processors used. Furthermore, MatLab code for Monte Carlo was made faster by vectorizing simulation process. Finally, obtained option values are compared to those obtained with popular finite difference methods, and it is discussed which of the algorithms is more appropriate for which purpose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En esta tesis presentamos una teoría adaptada a la simulación de fenómenos lentos de transporte en sistemas atomísticos. En primer lugar, desarrollamos el marco teórico para modelizar colectividades estadísticas de equilibrio. A continuación, lo adaptamos para construir modelos de colectividades estadísticas fuera de equilibrio. Esta teoría reposa sobre los principios de la mecánica estadística, en particular el principio de máxima entropía de Jaynes, utilizado tanto para sistemas en equilibrio como fuera de equilibrio, y la teoría de las aproximaciones del campo medio. Expresamos matemáticamente el problema como un principio variacional en el que maximizamos una entropía libre, en lugar de una energía libre. La formulación propuesta permite definir equivalentes atomísticos de variables macroscópicas como la temperatura y la fracción molar. De esta forma podemos considerar campos macroscópicos no uniformes. Completamos el marco teórico con reglas de cuadratura de Monte Carlo, gracias a las cuales obtenemos modelos computables. A continuación, desarrollamos el conjunto completo de ecuaciones que gobiernan procesos de transporte. Deducimos la desigualdad de disipación entrópica a partir de fuerzas y flujos termodinámicos discretos. Esta desigualdad nos permite identificar la estructura que deben cumplir los potenciales cinéticos discretos. Dichos potenciales acoplan las tasas de variación en el tiempo de las variables microscópicas con las fuerzas correspondientes. Estos potenciales cinéticos deben ser completados con una relación fenomenológica, del tipo definido por la teoría de Onsanger. Por último, aportamos validaciones numéricas. Con ellas ilustramos la capacidad de la teoría presentada para simular propiedades de equilibrio y segregación superficial en aleaciones metálicas. Primero, simulamos propiedades termodinámicas de equilibrio en el sistema atomístico. A continuación evaluamos la habilidad del modelo para reproducir procesos de transporte en sistemas complejos que duran tiempos largos con respecto a los tiempos característicos a escala atómica. ABSTRACT In this work, we formulate a theory to address simulations of slow time transport effects in atomic systems. We first develop this theoretical framework in the context of equilibrium of atomic ensembles, based on statistical mechanics. We then adapt it to model ensembles away from equilibrium. The theory stands on Jaynes' maximum entropy principle, valid for the treatment of both, systems in equilibrium and away from equilibrium and on meanfield approximation theory. It is expressed in the entropy formulation as a variational principle. We interpret atomistic equivalents of macroscopic variables such as the temperature and the molar fractions, wich are not required to be uniform, but can vary from particle to particle. We complement this theory with Monte Carlo summation rules for further approximation. In addition, we provide a framework for studying transport processes with the full set of equations driving the evolution of the system. We first derive a dissipation inequality for the entropic production involving discrete thermodynamic forces and fluxes. This discrete dissipation inequality identifies the adequate structure for discrete kinetic potentials which couple the microscopic field rates to the corresponding driving forces. Those kinetic potentials must finally be expressed as a phenomenological rule of the Onsanger Type. We present several validation cases, illustrating equilibrium properties and surface segregation of metallic alloys. We first assess the ability of a simple meanfield model to reproduce thermodynamic equilibrium properties in systems with atomic resolution. Then, we evaluate the ability of the model to reproduce a long-term transport process in complex systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic assignment methods use genotype likelihoods to draw inference about where individuals were or were not born, potentially allowing direct, real-time estimates of dispersal. We used simulated data sets to test the power and accuracy of Monte Carlo resampling methods in generating statistical thresholds for identifying F-0 immigrants in populations with ongoing gene flow, and hence for providing direct, real-time estimates of migration rates. The identification of accurate critical values required that resampling methods preserved the linkage disequilibrium deriving from recent generations of immigrants and reflected the sampling variance present in the data set being analysed. A novel Monte Carlo resampling method taking into account these aspects was proposed and its efficiency was evaluated. Power and error were relatively insensitive to the frequency assumed for missing alleles. Power to identify F-0 immigrants was improved by using large sample size (up to about 50 individuals) and by sampling all populations from which migrants may have originated. A combination of plotting genotype likelihoods and calculating mean genotype likelihood ratios (D-LR) appeared to be an effective way to predict whether F-0 immigrants could be identified for a particular pair of populations using a given set of markers.