903 resultados para enriquecimento de funções
Resumo:
Es nuestro interés en este curso discutir algunos aspectos teóricos y metodológicos relativos a la objetivación del conocimiento matemático, específicamente el relacionado con el concepto de función y con el concepto de parábola. Haremos esta discusión desde algunos resultados obtenidos de la investigación “El conocimiento matemático: desencadenador de interrelaciones en la aula de clase”. En dicho estudio empleamos una metodología a la luz del paradigma cualitativo, bajo un enfoque crítico-dialéctico y desde una investigación colaborativa. Nos apoyamos teóricamente en autores que asumen una perspectiva sociocultural de la Educación y de la Educación Matemática, por ejemplo, Bajtin (2004, 2009), Caraça (1984), Moura (2001, 2010) y Radford (2004, 2006, 2008). Este estudio nos posibilitó comprender, entre otras ideas, que los conceptos que cada alumno objetivó con respecto al objeto función y al objeto parábola no fueron únicos; como no pueden serlo el proceso de objetivación, ni los conceptos mismos.
Resumo:
El presente reporte articula el modelo educativo de van Hiele en su aspecto prescriptivo con la enseñanza de uno de los conceptos fundamentales del Análisis Matemático, continuidad local, a través de la implementación y el desarrollo de un Módulo de Aprendizaje que permite procesos de razonamiento en los estudiantes con el fin de promoverlos de un Nivel II a un Nivel III, el módulo es construido en correspondencia con los descriptores de fases para de dar cuenta de las estructuras mentales elaboradas. Posteriormente, en el análisis de cada uno de los tres casos, se describe en categorías en correspondencia los descriptores y donde se hace explícito como razonan los estudiantes en su paso del Nivel II al Nivel III respecto al concepto de continuidad local.
Resumo:
En Colombia existen pocos estudios relativos al objeto de esta investigación, los que hay son referidos a la básica primaria y preescolar. El tercer estudio internacional de matemáticas y ciencias TIMSS, es la continuación de una serie de estudios en educación matemática para establecer el alcance de los logros educativos en estas áreas. Por otro lado, la Agenda Internacional de Educación Matemática ha recomendado investigar algunos tópicos asociados a estos logros; el tema de esta investigación es uno de ellos. En este caso se ha indagado sobre muchos aspectos que rodean la formulación de logros hasta la evaluación de los mismos, por que estos direccionan el aprendizaje del conocimiento matemático escolar. De ahí que se deban tener en cuenta ciertos elementos teóricos y prácticos planteados en la legislación vigente para el sistema educativo y los procesos de desarrollo y pensamiento entre otros. El trabajo parte de una teorización de la evaluación como referente para analizar la información obtenida de una muestra aleatoria tomada de 15 colegios del Departamento del Cesar donde se entrevistó también aleatoriamente a 60 profesores y 552 estudiantes entre 7° y 11° grados. Los resultados muestran una categorización de los elementos que participan en este proceso como son: los fundamentos para plantear o establecer los logros del aprendizaje, los mecanismos para evaluar, la valoración por períodos, niveles de importancia de algunos factores cuando se evalúa, aspectos que determinan la evaluación, dificultades para valorar los logros, criterios para la evaluación, tipos de evaluación aplicadas por los profesores, objeto de la evaluación y otros. Como conclusión del análisis de esta información, se desprenden una serie de recomendaciones de cómo valorar los logros del aprendizaje matemático para contribuir al mejoramiento de las prácticas evaluativas y la formulación de logros por parte de los profesores de matemáticas.
Resumo:
En esta comunicación se presenta un resumen del trabajo de grado desarrollado por un grupo de profesores, del cual hizo parte el autor (1999), adscritos al programa de Especialización en Educación Matemática desarrollado por la Universidad Distrital Francisco José de Caldas, en convenio con la Universidad de Sucre (Sincelejo).
Resumo:
Description of some variables used in PISA 2003 project to asses competences.
Resumo:
La evaluación es tema fundamental en la discusión sobre la educación matemática y sus referentes incorporan aspectos conceptuales, sino metodológicos, didácticos de la matemática escolar acorde con los lineamientos vigentes. Tal es el caso de la evaluación por competencias en el Examen de Estado, que ha sido objeto de análisis y críticas sobre la manera como ha interpretado y diseñado el instrumento de evaluación, en particular las preguntas que dan cuenta de las competencias interpretativa, argumentativa y propositiva en matemáticas. Sabemos que su análisis permite conceptualizar cada vez mejor la evaluación y así mismo ofrecer a la comunidad de matemática educativa otros elementos de reflexión sobre lo que nos ocupa: cualificar la educación básica y media.
Resumo:
Diversas investigaciones han mostrado la dificultad que existe en el proceso de enseñanza aprendizaje del concepto de límite; más aún cuando este presenta diversos obstáculos (geométrico, horror al infinito, relativo a funciones y ligado al símbolo)que deben ser superados en su totalidad para aprender dicho concepto. De esta manera, el presente trabajo pretende mostrar cómo desde un contexto geométrico se hace uso de los fractales, específicamente del fractal “árbol pitagórico”, el cual se propone durante tres sesiones de clase en estudiantes de grado undécimo para ir construyendo la noción de límite. En este sentido, se busca promover un aprendizaje más dinámico y autónomo, donde el estudiante tenga un contacto directo con la construcción de dicho concepto.
Resumo:
Debo empezar por hacer referencia a los amigos y colegas de trabajo, en particular al grupo de investigación Matemáticas Escolares de la Universidad Distrital Francisco José de Caldas (Matescud) pues del intercambio con ellos aparecen todas las ideas que expondré. La Asociación Colombiana de Matemática Educativa ha decidido abordar en este encuentro un aspecto crucial para la mejor comprensión de las peticiones y obligaciones que se formulan en los Lineamientos Curriculares para Matemáticas (MEN, 1998). Entre las peticiones y obligaciones aludidas se encuentra, por ejemplo:1. La adopción de una perspectiva didáctica centrada en la teoría de la transposición didáctica 2. La adopción de una perspectiva cultural de la educación matemática 3. La adopción como uno de los propósitos de formación para los estudiantes el de su desarrollo de pensamiento matemático y de manera particular el desarrollo de su pensamiento espacial, métrico, variacional, aleatorio y numérico 4. Como consecuencia de la anterior adopción aparece el trabajo por resolución de problemas ya que de acuerdo con Dubinsky
Resumo:
La introducción a la clase de matemáticas de la calculadora TI 92 Plus y otros dispositivos, tales como el CBR, están generando una nueva cultura matemática, caracterizar algunos rasgos de éste fenómeno educativo en la modelación del movimiento pendular es el propósito central de la presente investigación. El trabajo de los estudiantes permitió observar en la práctica los constitutivos del marco teórico del proyecto de incorporación de nuevas tecnologías al currículo de matemáticas de Colombia, como son: mediación instrumental, representaciones ejecutables, cognición situada, solución de problemas, fluidez algorítmica y fluidez conceptual.
Resumo:
En este momento la educación matemática en el país se encuentra cruzando por un período crítico caracterizado por transformaciones fruto de la implementación de las políticas del Ministerio de Educación Nacional. Una de ellas, relacionada con los estándares básicos de matemáticas, son punto neurálgico para el sistema educativo en general. Su implementación en las instituciones educativas del país deberá generar espacios de reflexión, debate, análisis, confrontación, etc., a partir de los cuales se introduzcan formas nuevas de comprender, implementar, evaluar y transformar el currículo de matemáticas de nuestro país.
Resumo:
Los Estándares Básicos de Calidad del área de matemáticas, propuestos y publicados por el MEN en el primer semestre de este año, reflejan el enfoquen de los Lineamientos Curriculares (MEN,1998) en el sentido de organizar el currículo relacionando: procesos generales (razonamiento, resolución de problemas y comunicación), conocimientos básicos (orientación conceptual que debe tener el currículo, que parte de reconocer no sólo las relaciones entre conceptos asociados a un mismo pensamiento, sino las relaciones con conceptos de otros pensamientos). En el documento de estándares de calidad no se proponen pues estos elementos aislados sino que se retoma la idea de los lineamientos de considerar como un eje los procesos cognitivos de los estudiantes cuando se enfrentan en su actividad matemática a la construcción y uso no sólo de tópicos matemáticos específicos sino de los sistemas simbólicos y de representación característicos del conocimiento matemático.
Resumo:
En el marco del programa de Examen de Estado para ingreso a la Educación Superior del ICFES, se ha venido desarrollando la evaluación de competencias en diferentes áreas del conocimiento desde el año 2000, y se ha constituido en tema de permanente discusión y reflexión de distintos ámbitos de la educación en el país. Con este taller se propone ampliar la discusión sobre esta evaluación de competencias en matemáticas como son los ejes conceptuales y las competencias interpretativa, argumentativa y propositiva.
Resumo:
En los últimos años del siglo pasado y específicamente desde la promulgación de la Ley General de Educación, las políticas educativas en Colombia han tenido como meta la solución del problema de la baja calidad de la educación; por esta razón se han promovido cambios y se ha prestado especial interés a la evaluación como estrategia primordial para conseguir ese propósito. A través de la evaluación se pretende mejorar los niveles de aprendizaje de los estudiantes y enriquecer el desarrollo profesional de los maestros. Pero la forma de concebir la evaluación no ha cambiado mucho y la manera como se lleva a cabo, poco o nada contribuye en la formación de personas para lograr un nivel adecuado dentro de una sociedad democrática.
Resumo:
En el trabajo que hemos venido realizando en las pasantías de extensión, pretendemos desarrollar parte de la trigonometría desde la época griega hasta la actualidad; tomando como eje central la proporcionalidad, basados en una metodología de resolución de problemas e implementado la calculadora T.I.- 92 Plus en el aula. Para llevar a cabo este proyecto, diseñamos una serie de actividades enfocadas a desarrollar el concepto de proporcionalidad, trabajando desde la semejanza de triángulos. Este enfoque permite al estudiante, por medio de sus experiencias, construir un conjunto de herramientas que le contribuya no sólo enfrentarse a una situación problema, sino que también le ayude a desarrollar su comprensión y habilidad matemáticas.
Resumo:
Presentó en este encuentro algunos resultados de la investigación “La objetivación del concepto de parábola desde el uso de artefactos”. Estos resultados nos muestran cómo los artefactos son constituyentes en el proceso de objetivación del concepto de parábola. Para ello, explicitamos, en una primera parte, la importancia que desde la Teoría de la Actividad se le ha dado al carácter mediatizado del pensamiento; seguidamente mostramos, a partir de los diferentes episodios, cómo los artefactos culturales, en el sentido de Radford (2008) se convierten en constituyentes en el proceso de objetivación del concepto de parábola. Así, consideramos que la manera como un sujeto llega a pensar y a conocer un objeto depende de los significados culturales producidos, de las interpretaciones propias, de las formas de acercase al objeto, por medio de la actividad misma y siempre mediada por artefactos.