982 resultados para Weather variables


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper the meteorological processes responsible for transporting tracer during the second ETEX (European Tracer EXperiment) release are determined using the UK Met Office Unified Model (UM). The UM predicted distribution of tracer is also compared with observations from the ETEX campaign. The dominant meteorological process is a warm conveyor belt which transports large amounts of tracer away from the surface up to a height of 4 km over a 36 h period. Convection is also an important process, transporting tracer to heights of up to 8 km. Potential sources of error when using an operational numerical weather prediction model to forecast air quality are also investigated. These potential sources of error include model dynamics, model resolution and model physics. In the UM a semi-Lagrangian monotonic advection scheme is used with cubic polynomial interpolation. This can predict unrealistic negative values of tracer which are subsequently set to zero, and hence results in an overprediction of tracer concentrations. In order to conserve mass in the UM tracer simulations it was necessary to include a flux corrected transport method. Model resolution can also affect the accuracy of predicted tracer distributions. Low resolution simulations (50 km grid length) were unable to resolve a change in wind direction observed during ETEX 2, this led to an error in the transport direction and hence an error in tracer distribution. High resolution simulations (12 km grid length) captured the change in wind direction and hence produced a tracer distribution that compared better with the observations. The representation of convective mixing was found to have a large effect on the vertical transport of tracer. Turning off the convective mixing parameterisation in the UM significantly reduced the vertical transport of tracer. Finally, air quality forecasts were found to be sensitive to the timing of synoptic scale features. Errors in the position of the cold front relative to the tracer release location of only 1 h resulted in changes in the predicted tracer concentrations that were of the same order of magnitude as the absolute tracer concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The atmospheric component of the United Kingdom’s new High-resolution Global Environmental Model (HiGEM) has been run with interactive aerosol schemes that include biomass burning and mineral dust. Dust emission, transport, and deposition are parameterized within the model using six particle size divisions, which are treated independently. The biomass is modeled in three nonindependent modes, and emissions are prescribed from an external dataset. The model is shown to produce realistic horizontal and vertical distributions of these aerosols for each season when compared with available satellite- and ground-based observations and with other models. Combined aerosol optical depths off the coast of North Africa exceed 0.5 both in boreal winter, when biomass is the main contributor, and also in summer, when the dust dominates. The model is capable of resolving smaller-scale features, such as dust storms emanating from the Bode´ le´ and Saharan regions of North Africa and the wintertime Bode´ le´ low-level jet. This is illustrated by February and July case studies, in which the diurnal cycles of model variables in relation to dust emission and transport are examined. The top-of-atmosphere annual mean radiative forcing of the dust is calculated and found to be globally quite small but locally very large, exceeding 20 W m22 over the Sahara, where inclusion of dust aerosol is shown to improve the model radiative balance. This work extends previous aerosol studies by combining complexity with increased global resolution and represents a step toward the next generation of models to investigate aerosol–climate interactions. 1. Introduction Accurate modeling of mineral dust is known to be important because of its radiative impact in both numerical weather prediction models (Milton et al. 2008; Haywood et

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several previous studies have attempted to assess the sublimation depth-scales of ice particles from clouds into clear air. Upon examining the sublimation depth-scales in the Met Office Unified Model (MetUM), it was found that the MetUM has evaporation depth-scales 2–3 times larger than radar observations. Similar results can be seen in the European Centre for Medium-Range Weather Forecasts (ECMWF), Regional Atmospheric Climate Model (RACMO) and Météo-France models. In this study, we use radar simulation (converting model variables into radar observations) and one-dimensional explicit microphysics numerical modelling to test and diagnose the cause of the deep sublimation depth-scales in the forecast model. The MetUM data and parametrization scheme are used to predict terminal velocity, which can be compared with the observed Doppler velocity. This can then be used to test the hypothesis as to why the sublimation depth-scale is too large within the MetUM. Turbulence could lead to dry air entrainment and higher evaporation rates; particle density may be wrong, particle capacitance may be too high and lead to incorrect evaporation rates or the humidity within the sublimating layer may be incorrectly represented. We show that the most likely cause of deep sublimation zones is an incorrect representation of model humidity in the layer. This is tested further by using a one-dimensional explicit microphysics model, which tests the sensitivity of ice sublimation to key atmospheric variables and is capable of including sonde and radar measurements to simulate real cases. Results suggest that the MetUM grid resolution at ice cloud altitudes is not sufficient enough to maintain the sharp drop in humidity that is observed in the sublimation zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Normally wind measurements from Doppler radars rely on the presence of rain. During fine weather, insects become a potential radar target for wind measurement. However, it is difficult to separate ground clutter and insect echoes when spectral or polarimetric methods are not available. Archived reflectivity and velocity data from repeated scans provide alternative methods. The probability of detection (POD) method, which maps areas with a persistent signal as ground clutter, is ineffective when most scans also contain persistent insect echoes. We developed a clutter detection method which maps the standard deviation of velocity (SDV) over a large number of scans, and can differentiate insects and ground clutter close to the radar. Beyond the range of persistent insect echoes, the POD method more thoroughly removes ground clutter. A new, pseudo-probability clutter map was created by combining the POD and SDV maps. The new map optimised ground clutter detection without removing insect echoes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Earth-directed coronal mass ejection (CME) of 8 April 2010 provided an opportunity for space weather predictions from both established and developmental techniques to be made from near–real time data received from the SOHO and STEREO spacecraft; the STEREO spacecraft provide a unique view of Earth-directed events from outside the Sun-Earth line. Although the near–real time data transmitted by the STEREO Space Weather Beacon are significantly poorer in quality than the subsequently downlinked science data, the use of these data has the advantage that near–real time analysis is possible, allowing actual forecasts to be made. The fact that such forecasts cannot be biased by any prior knowledge of the actual arrival time at Earth provides an opportunity for an unbiased comparison between several established and developmental forecasting techniques. We conclude that for forecasts based on the STEREO coronagraph data, it is important to take account of the subsequent acceleration/deceleration of each CME through interaction with the solar wind, while predictions based on measurements of CMEs made by the STEREO Heliospheric Imagers would benefit from higher temporal and spatial resolution. Space weather forecasting tools must work with near–real time data; such data, when provided by science missions, is usually highly compressed and/or reduced in temporal/spatial resolution and may also have significant gaps in coverage, making such forecasts more challenging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In a recent study, Williams introduced a simple modification to the widely used Robert–Asselin (RA) filter for numerical integration. The main purpose of the Robert–Asselin–Williams (RAW) filter is to avoid the undesired numerical damping of the RA filter and to increase the accuracy. In the present paper, the effects of the modification are comprehensively evaluated in the Simplified Parameterizations, Primitive Equation Dynamics (SPEEDY) atmospheric general circulation model. First, the authors search for significant changes in the monthly climatology due to the introduction of the new filter. After testing both at the local level and at the field level, no significant changes are found, which is advantageous in the sense that the new scheme does not require a retuning of the parameterized model physics. Second, the authors examine whether the new filter improves the skill of short- and medium-term forecasts. January 1982 data from the NCEP–NCAR reanalysis are used to evaluate the forecast skill. Improvements are found in all the model variables (except the relative humidity, which is hardly changed). The improvements increase with lead time and are especially evident in medium-range forecasts (96–144 h). For example, in tropical surface pressure predictions, 5-day forecasts made using the RAW filter have approximately the same skill as 4-day forecasts made using the RA filter. The results of this work are encouraging for the implementation of the RAW filter in other models currently using the RA filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Not long after Franklin’s iconic studies, an atmospheric electric field was discovered in “fair weather” regions, well away from thunderstorms. The origin of the fair weather field was sought by Lord Kelvin, through development of electrostatic instrumentation and early data logging techniques, but was ultimately explained through the global circuit model of C.T.R. Wilson. In Wilson’s model, charge exchanged by disturbed weather electrifies the ionosphere, and returns via a small vertical current density in fair weather regions. New insights into the relevance of fair weather atmospheric electricity to terrestrial and planetary atmospheres are now emerging. For example, there is a possible role of the global circuit current density in atmospheric processes, such as cloud formation. Beyond natural atmospheric processes, a novel practical application is the use of early atmospheric electrostatic investigations to provide quantitative information on past urban air pollution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of a warmer climate on the properties of extra-tropical cyclones is investigated using simulations of the ECHAM5 global climate model at resolutions of T213 (60 km) and T319 (40 km). Two periods representative of the end of the 20th and 21st centuries are investigated using the IPCC A1B scenario. The focus of the paper is on precipitation for the NH summer and winter seasons, however results from vorticity and winds are also presented. Similar number of events are identified at both resolutions. There are, however, a greater number of extreme precipitation events in the higher reso- lution run. The difference between maximum intensity distributions are shown to be statistically significant using a Kolmogorov-Smirnov test. A Generalised Pareto Distribution is used to analyse changes in extreme precipitation and wind events. In both resolutions, there is an increase in the number of ex- treme precipitation events in a warmer climate for all seasons, together with a reduction in return period. This is not associated with any increased verti- cal velocity, or with any increase in wind intensity in the winter and spring. However, there is an increase in wind extremes in the summer and autumn associated with tropical cyclones migrating into the extra-tropics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the year 2007 a General Observation Period (GOP) has been performed within the German Priority Program on Quantitative Precipitation Forecasting (PQP). By optimizing the use of existing instrumentation a large data set of in-situ and remote sensing instruments with special focus on water cycle variables was gathered over the full year cycle. The area of interest covered central Europe with increasing focus towards the Black Forest where the Convective and Orographically-induced Precipitation Study (COPS) took place from June to August 2007. Thus the GOP includes a variety of precipitation systems in order to relate the COPS results to a larger spatial scale. For a timely use of the data, forecasts of the numerical weather prediction models COSMO-EU and COSMO-DE of the German Meteorological Service were tailored to match the observations and perform model evaluation in a near real-time environment. The ultimate goal is to identify and distinguish between different kinds of model deficits and to improve process understanding.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new database of weather and circulation type catalogs is presented comprising 17 automated classification methods and five subjective classifications. It was compiled within COST Action 733 "Harmonisation and Applications of Weather Type Classifications for European regions" in order to evaluate different methods for weather and circulation type classification. This paper gives a technical description of the included methods using a new conceptual categorization for classification methods reflecting the strategy for the definition of types. Methods using predefined types include manual and threshold based classifications while methods producing types derived from the input data include those based on eigenvector techniques, leader algorithms and optimization algorithms. In order to allow direct comparisons between the methods, the circulation input data and the methods' configuration were harmonized for producing a subset of standard catalogs of the automated methods. The harmonization includes the data source, the climatic parameters used, the classification period as well as the spatial domain and the number of types. Frequency based characteristics of the resulting catalogs are presented, including variation of class sizes, persistence, seasonal and inter-annual variability as well as trends of the annual frequency time series. The methodological concept of the classifications is partly reflected by these properties of the resulting catalogs. It is shown that the types of subjective classifications compared to automated methods show higher persistence, inter-annual variation and long-term trends. Among the automated classifications optimization methods show a tendency for longer persistence and higher seasonal variation. However, it is also concluded that the distance metric used and the data preprocessing play at least an equally important role for the properties of the resulting classification compared to the algorithm used for type definition and assignment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Daily weather patterns over the North Atlantic are classified into relevant types: typical weather patterns that may characterize the range of climate impacts from aviation in this region, for both summer and winter. The motivation is to provide a set of weather types to facilitate an investigation of climate-optimal aircraft routing of trans-Atlantic flights (minimizing the climate impact on a flight-by-flight basis). Using the New York to London route as an example, the time-optimal route times are shown to vary by over 60 min, to take advantage of strong tailwinds or avoid headwinds, and for eastbound routes latitude correlates well with the latitude of the jet stream. The weather patterns are classified by their similarity to the North Atlantic Oscillation and East Atlantic teleconnection patterns. For winter, five types are defined; in summer, when there is less variation in jet latitude, only three types are defined. The types can be characterized by the jet strength and position, and therefore the location of the time-optimal routes varies by type. Simple proxies for the climate impact of carbon dioxide, ozone, water vapour and contrails are defined, which depend on parameters such as the route time, latitude and season, the time spent flying in the stratosphere, and the distance over which the air is supersaturated with respect to ice. These proxies are then shown to vary between weather types and between eastbound and westbound routes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ice cloud representation in general circulation models remains a challenging task, due to the lack of accurate observations and the complexity of microphysical processes. In this article, we evaluate the ice water content (IWC) and ice cloud fraction statistical distributions from the numerical weather prediction models of the European Centre for Medium-Range Weather Forecasts (ECMWF) and the UK Met Office, exploiting the synergy between the CloudSat radar and CALIPSO lidar. Using the last three weeks of July 2006, we analyse the global ice cloud occurrence as a function of temperature and latitude and show that the models capture the main geographical and temperature-dependent distributions, but overestimate the ice cloud occurrence in the Tropics in the temperature range from −60 °C to −20 °C and in the Antarctic for temperatures higher than −20 °C, but underestimate ice cloud occurrence at very low temperatures. A global statistical comparison of the occurrence of grid-box mean IWC at different temperatures shows that both the mean and range of IWC increases with increasing temperature. Globally, the models capture most of the IWC variability in the temperature range between −60 °C and −5 °C, and also reproduce the observed latitudinal dependencies in the IWC distribution due to different meteorological regimes. Two versions of the ECMWF model are assessed. The recent operational version with a diagnostic representation of precipitating snow and mixed-phase ice cloud fails to represent the IWC distribution in the −20 °C to 0 °C range, but a new version with prognostic variables for liquid water, ice and snow is much closer to the observed distribution. The comparison of models and observations provides a much-needed analysis of the vertical distribution of IWC across the globe, highlighting the ability of the models to reproduce much of the observed variability as well as the deficiencies where further improvements are required.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For forecasting and economic analysis many variables are used in logarithms (logs). In time series analysis, this transformation is often considered to stabilize the variance of a series. We investigate under which conditions taking logs is beneficial for forecasting. Forecasts based on the original series are compared to forecasts based on logs. For a range of economic variables, substantial forecasting improvements from taking logs are found if the log transformation actually stabilizes the variance of the underlying series. Using logs can be damaging for the forecast precision if a stable variance is not achieved.