956 resultados para Varactor diode


Relevância:

10.00% 10.00%

Publicador:

Resumo:

InAs quantum dots have been grown by solid source molecular beam epitaxy on different matrix to investigate the effect on the structure and optical properties. High density of 1.02 x 10(11) cm(-2) of InAs islands on In0.15Ga0.85As and In0.15Al0.85As underlying layer has been achieved. Atomic force microscopy and photoluminescence spectra show the size evolution of InAs islands on In0.15Ga0.85As underlying layer. A strong 1.3 mum photoluminescence from InAs islands on In0.15Ga0.85As underlying layer and with InGaAs strain-reduced layer has been obtained. Single-mirror light emitting diode structures with InAs quantum dots capped by InGaAs grown on InGaAs layer as active layer were fabricated and the corresponding radiative efficiency was deduced to be as high as 20.5%. Our results provide important information for optimizing the epitaxial structures of 1.3 mum wavelength quantum dots devices. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied how the optical properties of InAs self-assembled quantum dots (QDs) grown on GaAs substrate are affected when depositing an InAlAs/InGaAs combination overgrowth layer directly on it by rapid thermal annealing (RTA). The photoluminescence measurement demonstrated that the InAs QDs experiences an abnormal variation during the course of RTA. The model of transformation of InAs-InAlAs-InGaAlAs could be used to well explain the phenomena. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ground and excited state excitonic transitions of stacked InAs self-organized quantum dots (QDs) in a laser diode structure are studied. The interband absorption transitions of QDs are investigated by non-destructive PV spectra, indicating that the strongest absorption is related to the excited states with a high density and coincides with the photon energy of lasing emission. The temperature and excitation (electric injection) intensity dependences of photoluminescence and electroluminescence indicate the influence of state filling effect on the luminescence of threefold stacked QDs. The results indicate that different coupling channels exist between electronic states in both vertical and lateral directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An accurate and simple technique for measuring the input reflection coefficient and the frequency response of semiconductor laser diode chips is proposed and demonstrated. All the packaging parasitics could be obtained accurately using a calibrated probe, and the impedance of the intrinsic diode chip is deduced from the directly measured reflection coefficient. The directly measured impedance of a laser diode is affected strongly by the short bond wire. In the frequency response (S(2)1) measurements of semiconductor laser diode chips, the test fixture consists of a microwave probe, a submount, and a bond wire. The S-parameters of the probe could be determined using the short-open-match (SOM) method. Both the attenuation and the reflection of the test fixture have a strong influence on the directly measured frequency response, and in our proposed technique, the effect of test fixture is completely removed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Si-based nanomaterials are some new photoeletronic and informational materials developed rapidly in recent years, and they have potential applications in the light emitting devices, e. g. Si light emitting diode, Si laser and integrated Si-based photoelectronics. Among them are nano-scale porous silicon (ps), Si nanocrystalline embedded SiO2 (SiOx, x < 2.0) matrices, Si nanoquantum dot and Si/SiO2 superlattice, etc. At present, there are various indications that if these materials can achieve efficient and stable luminescence, which are photoluminescence (PL) and electroluminescence (EL), it is possible for them to lead to a new informational revolution in the early days of the 21st century. In this article, we will mainly review the progress of study on Si-based nanomaterials in the past ten years. The involved contents are the fabricated methods, structural characterizations and light emitting properties. Finally, we predicate the developed tendency of this field in the following ten years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel line-order of InAs quantum dots (QDs) along the [1, 1, 0] direction on GaAs substrate has been prepared by self-organized growth. After 2.5 monolayer InAs deposition, QDs in the first layer of multi-layer samples started to gather in a line. Owing to the action of strong stress between layers, almost all the dots of the fourth layer gathered in lines. The dots lining up tightly are actually one-dimensional superlattice of QDs, of which the density of electronic states is different from that of isolated QDs or quantum wires. The photoluminescence spectra of our multi-layer QD sample exhibited a feature of very broad band so that it is suitable for the active medium of super luminescent diode. The reason of dots lining up is attributed to the hill-and-valley structure of the buffer, anisotropy and different diffusion rates in the different directions on the buffer and strong stress between QD layers. (C) 2002 Published by Elsevier Science B. V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thermal processing of strained In0.2Ga0.8As/GaAs graded-index separate confinement heterostructure single quantum well laser diodes grown by molecular beam epitaxy is investigated. It is found that rapid thermal annealing can improve the 77K photoluminescence efficiency and electron emission from the active layer, due to the removal of nonradiative centers from the InGaAs/GaAs interface. Because of the interdiffusion of Al and Ga atoms, rapid thermal annealing increases simultaneously the density of DX centers in the AlGaAs graded layer. The current stressing experiments of postgrowth and annealed laser diodes are indicative of a corresponding increase in the concentration of DX centers, suggesting that DX centers may be responsible for the degradation of laser diode performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SiO2/Si/SiO2 nanometer double barriers (SSSNDB) with Si layers of twenty-seven different thicknesses in a range of 1-5 nm with an interval of 0.2 nm have been deposited on p-Si substrates using two-target alternative magnetron sputtering. Electroluminescence (EL) from the semitransparent Au film/SSSNDB/p-Si diodes and from a control diode without any Si layer have been observed under forward bias. Each EL spectrum of all these diodes can be fitted by two Gaussian bands with peak energies of 1.82 and 2.25 eV, and full widths at half maximum of 0.38 and 0.69 eV, respectively. It is found that the current, EL peak wavelength and intensities of the two Gaussian bands of the Au/SSSNDB/p-Si structure oscillate synchronously with increasing Si layer thickness with a period corresponding to half a de Broglie wavelength of the carriers. The experimental results strongly indicate that the EL originates mainly from two types of luminescence centres with energies of 1.82 and 2.25 eV in the SiO2 barriers, rather than from the nanometer Si well in the SSSNDB. The EL mechanism is discussed in detail.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Gunn active layer is used as an X electron probe to detect the X tunnelling current in the GaAs-AlAs heterostructure, from which a new heterostructure intervalley transferred electron (HITE) device is obtained. In the 8 mm band, the highest pulse output power of these diodes is 2.65 W and the highest conversion efficiency is 18%. The dc and rf performance of the HITE devices was simulated by the band mixing resonant tunnelling theory and Monte Carlo transport simulation. The HITE effect has transformed the transit-time dipole-layer mode in the Gunn diode into a relaxation oscillation mode in the HITE device. From the comparison of simulated results to the measured data, the HITE effect is demonstrated straightforwardly.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the growth of GaInNAs by a plasma-assisted molecular-beam epitaxy (MBE). It was found that the N-radicals were incorporated into the epitaxial layer like dopant atoms. In the range of 400-500 degrees C, the growth temperature (T-g) mainly affected the crystal quality of GaInNAs rather than the N concentration. The N concentration dropped rapidly when T-g exceeded 500 degrees C. Considering N desorption alone is insufficient to account for the strong falloff of the N concentration with T-g over 500 degrees C, the effect of thermally-activated N surface segregation must be taken into account. The N concentration was independent of the arsenic pressure and the In concentration in GaInNAs layers, but inversely proportional to the growth rate. Based on the experimental results, a kinetic model including N desorption and surface segregation was developed to analyze quantitatively the N incorporation in MBE growth. (C) 2000 American Institute of Physics. [S0003-6951(00)00928-1].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the material growth and fabrication of high-performance 980-nm strained quantum-well lasers employing a hybrid material system consisting of an Al-free InGaAs-InGaAsP active region and AlGaAs cladding layers. The use of AlGaAs cladding instead of InGaP provides potential advantages in flexibility of laser design, simple epitaxial growth, and improvement of surface morphology and laser performance. The as-grown InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.95 eV) lasers achieve a low threshold current density of 150 A/cm(2) (at a cavity length of 1500 mu m), internal quantum efficiency of similar to 95%, and low internal loss of 1.8 cm(-1). Both broad-area and ridge-waveguide laser devices are fabricated. For 100-mu m-wide stripe lasers with a cavity length of 800 Irm, a slope efficiency of 1.05 W/A and a characteristic temperature coefficient (T-0) of 230 K are achieved. The lifetime test demonstrates a reliable performance. The comparison with our fabricated InGaAs-InGaAsP(1.6 eV)-AlGaAs(1.87 eV) lasers and Al-free InGaAs-InGaAsP (1.6 eV)-InGaP lasers are also given and discussed. The selective etching between AlGaAs and InGaAsP is successfully used for the formation of a ridge-waveguide structure. For 4-mu m-wide ridge-waveguide laser devices, a maximum output power of 350 mW is achieved. The fundamental mode output power can be up to 190 mW with a slope efficiency as high as 0.94 W/A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A quantum well controller (QWC) consisting of a direct-gap/indirect-gap quantum well and a doping interface is proposed to control the dynamic operation of the Gunn active layer. Through the Monte Carlo simulation a new relaxation mode for this new device is found. The oscillation and amplification behavior of the Gunn active layer under the control of the QWC is investigated theoretically and experimentally. All work demonstrates the great control capacity of the QWC and provides a new way to improve the performance of semiconductor devices. A new oscillation diode made of the QWC and a Gunn active layer has been designed and fabricated. In the 8 mm band the highest pulse output power of these diodes is 2.55 W and the highest conversion efficiency is 18%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The feasibility of growing device-quality cubic GaN/GaAs(001) films by metal organic chemical vapor deposition has been demonstrated. The optical quality of the GaN films was characterized by room-temperature photoluminescence measurements, which shows a full width at half maximum of 46 meV. The structural quality of the films was investigated by transmission electron microscopy. There are submicron-size grains free from threading dislocations and stacking faults. More importantly, a cubic-phase GaN blue light-emitting diode has been fabricated. The device process, which is very simple and compatible with current GaAs technology, indicates a promising future for the blue light-emitting diode. (C) 1999 American Institute of Physics. [S0003-6951(99)01416-3].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel idea of InAlAs native oxide utilized to replace the p-n-p-n thyristor blocking layer and improve the high-temperature performance of buried heterostructure InGaAsP-InP laser is first proposed and demonstrated. A characteristic temperature (T-0) of 50 K is achieved from an InA1As native oxide buried heterostructure (NOBH) InGaAsP-InP multiquantum-well laser with 1.5-mu m-wide diode leakage passage path. The threshold current and slope efficiency of NOBH laser changes from 5.6 mA, 0.23 mW/mA to 28 mA, 0.11 mW/mA with the operating temperature changing from 20 degrees C to 100 degrees C. It is comparable to conventional p-n reverse biased junction BH laser with minimized diode leakage current, and is much better than the buried ridge strip with proton implanted laterally confinement laser.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors report on the fabrication of 980 nm InGaAs strained quantum well lasers with hybrid materials of InGaAsP as waveguide and AlGaAs as cladding grown by metal organic chemical vapour deposition. The InGaAs/InGaAsP/AlGaAs diode lasers (100 x 800 mu m) with broadened waveguide structure exhibit a threshold current of 180 mA, a slope efficiency of 1.0 W/A, and a high characteristic temperature coefficient (T-0) of 230 K.