935 resultados para Three-dimensional cell culture models
Resumo:
P>Aim To evaluate in vitro the effect of calcium hydroxide [Ca(OH)(2)] and Er:YAG laser on bacterial endotoxin [also known as lipopolysaccharide (LPS)] as determined by nitric oxide (NO) detection in J774 murine macrophage cell line culture. Methodology Samples of LPS solution (50 mu gmL-1), Ca(OH)(2) suspension (25 mg mL-1) and LPS suspension with Ca(OH)(2) were prepared. The studied groups were: I - LPS (control); II - LPS + Ca(OH)(2); III - LPS + Er:YAG laser (15 Hz 140 mJ); IV - LPS + Er:YAG laser (15 Hz 200 mJ); V - LPS + Er:YAG laser (15 Hz 250 mJ), VI - Pyrogen-free water; VII - Ca(OH)(2). Murine macrophage J774 cells were plated and 10 mu L of the samples were added to each well. The supernatants were collected for NO detection by the Griess reaction. Data were analysed statistically by one-way anova and Tukey`s test at 5% significance level. Results The mean and SE (in mu mol L-1) values of NO release were: I - 10.48 +/- 0.58, II - 6.41 +/- 0.90, III - 10.2 +/- 0.60, IV - 8.35 +/- 0.40, V - 10.40 +/- 0.53, VI - 3.75 +/- 0.70, VII - 6.44 +/- 0.60; and the values for the same experiment repeated after 1 week were: I - 21.20 +/- 1.50, II - 9.10 +/- 0.60, III - 19.50 +/- 1.00, IV - 18.50 +/- 0.60, V - 21.30 +/- 0.90, VI - 2.00 +/- 0.20, VII - 6.80 +/- 1.70. There was no significant difference (P > 0.05) between the control and the laser-treated groups (III, IV and V), or comparing groups II, VI and VII to each other (P > 0.05). Group I had significantly higher NO release than group II (P < 0.05). Groups II and VI had similar NO release (P > 0.05). Conclusions Calcium hydroxide inactivated the bacterial endotoxin (LPS) whereas none of the Er:YAG laser parameter settings had the same effectiveness.
Resumo:
Measurements of down-welling microwave radiation from raining clouds performed with the Advanced Microwave Radiometer for Rain Identification (ADMIRARI) radiometer at 10.7-21-36.5 GHz during the Global Precipitation Measurement Ground Validation ""Cloud processes of the main precipitation systems in Brazil: A contribution to cloud resolving modeling and to the Global Precipitation Measurement"" (CHUVA) campaign held in Brazil in March 2010 represent a unique test bed for understanding three-dimensional (3D) effects in microwave radiative transfer processes. While the necessity of accounting for geometric effects is trivial given the slant observation geometry (ADMIRARI was pointing at a fixed 30 elevation angle), the polarization signal (i.e., the difference between the vertical and horizontal brightness temperatures) shows ubiquitousness of positive values both at 21.0 and 36.5 GHz in coincidence with high brightness temperatures. This signature is a genuine and unique microwave signature of radiation side leakage which cannot be explained in a 1D radiative transfer frame but necessitates the inclusion of three-dimensional scattering effects. We demonstrate these effects and interdependencies by analyzing two campaign case studies and by exploiting a sophisticated 3D radiative transfer suited for dichroic media like precipitating clouds.
Resumo:
By means of self-consistent three-dimensional magnetohydrodynamics (MHD) numerical simulations, we analyze magnetized solar-like stellar winds and their dependence on the plasma-beta parameter (the ratio between thermal and magnetic energy densities). This is the first study to perform such analysis solving the fully ideal three-dimensional MHD equations. We adopt in our simulations a heating parameter described by gamma, which is responsible for the thermal acceleration of the wind. We analyze winds with polar magnetic field intensities ranging from 1 to 20 G. We show that the wind structure presents characteristics that are similar to the solar coronal wind. The steady-state magnetic field topology for all cases is similar, presenting a configuration of helmet streamer-type, with zones of closed field lines and open field lines coexisting. Higher magnetic field intensities lead to faster and hotter winds. For the maximum magnetic intensity simulated of 20 G and solar coronal base density, the wind velocity reaches values of similar to 1000 km s(-1) at r similar to 20r(0) and a maximum temperature of similar to 6 x 10(6) K at r similar to 6r(0). The increase of the field intensity generates a larger ""dead zone"" in the wind, i.e., the closed loops that inhibit matter to escape from latitudes lower than similar to 45 degrees extend farther away from the star. The Lorentz force leads naturally to a latitude-dependent wind. We show that by increasing the density and maintaining B(0) = 20 G the system recover back to slower and cooler winds. For a fixed gamma, we show that the key parameter in determining the wind velocity profile is the beta-parameter at the coronal base. Therefore, there is a group of magnetized flows that would present the same terminal velocity despite its thermal and magnetic energy densities, as long as the plasma-beta parameter is the same. This degeneracy, however, can be removed if we compare other physical parameters of the wind, such as the mass-loss rate. We analyze the influence of gamma in our results and we show that it is also important in determining the wind structure.
Resumo:
Adenosine acts in the nucleus tractus solitarii (NTS), one of the main brain sites related to cardiovascular control. In the present study we show that A(1) adenosine receptor (A(1R)) activation promotes an increase on alpha(2)-adrenoceptor (Alpha(2R)) binding in brainstem cell culture from newborn rats. We investigated the intracellular cascade involved in such modulatory process using different intracellular signaling molecule inhibitors as well as calcium chelators. Phospholipase C, protein kinase Ca(2+)-dependent, IP(3) receptor and intracellular calcium were shown to participate in A(1R)/Alpha(2R) interaction. In conclusion, this result might be important to understand the role of adenosine within the NTS regarding autonomic cardiovascular control. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this study, the ovary morphology of newly emerged ant queens of Atta sexdens rubropilosa was studied in whole mount preparations by confocal microscopy. The ovaries are composed of approximately 40 ovarioles, showing non-synchronic oocyte maturation. The terminal filament with clusters of undifferentiated cells was found at the distal end of the ovarioles. Next to this region is the germarium, composed of several elongated cystocytes interconnected by cytoplasmic bridges. The nurse cells (23-28 cells) result from asymmetric mitosis. Cytoskeleton analysis showed F-actin concentrated at the muscle cells of the external tunica and in fusomes inside the ovarioles. Microtubules were concentrated around the nuclei of the nurse and follicular cells. In contrast, the oocytes and the external tunica showed faint staining for tubulin.
Resumo:
A finite difference technique, based on a projection method, is developed for solving the dynamic three-dimensional Ericksen-Leslie equations for nematic liquid crystals subject to a strong magnetic field. The governing equations in this situation are derived using primitive variables and are solved using the ideas behind the GENSMAC methodology (Tome and McKee [32]; Tome et al. [34]). The resulting numerical technique is then validated by comparing the numerical solution against an analytic solution for steady three-dimensional flow between two-parallel plates subject to a strong magnetic field. The validated code is then employed to solve channel flow for which there is no analytic solution. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Particle conservation lattice-gas models with infinitely many absorbing states are studied on a one-dimensional lattice. As one increases the particle density, they exhibit a phase transition from an absorbing to an active phase. The models are solved exactly by the use of the transfer matrix technique from which the critical behavior was obtained. We have found that the exponent related to the order parameter, the density of active sites, is 1 for all studied models except one of them with exponent 2.
Resumo:
Zwitterionic peptides with trypanocidal activity are promising lead compounds for the treatment of African Sleeping Sickness, and have motivated research into the design of compounds capable of disrupting the protozoan membrane. In this study, we use the Langmuir monolayer technique to investigate the surface properties of an antiparasitic peptide, namely S-(2,4-dinitrophenyl)glutathione di-2-propyl ester, and its interaction with a model membrane comprising a phospholipid monolayer. The drug formed stable Langmuir monolayers. whose main feature was a phase transition accompanied by a negative surface elasticity. This was attributed to aggregation upon compression due to intermolecular bond associations of the molecules, inferred from surface pressure and surface potential isotherms. Brewster angle microscopy (BAM) images, infrared spectroscopy and dynamic elasticity measurements. When co-spread with dipalmitoyl phosphatidyl choline (DPPC). the drug affected both the surface pressure and the monolayer morphology, even at high surface pressures and with low amounts of the drug. The results were interpreted by assuming a repulsive, cooperative interaction between the drug and DPPC molecules. Such repulsive interaction and the large changes in fluidity arising from drug aggregation may be related to the disruption of the membrane, which is key for the parasite killing property. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Oligonucleotides have unique molecular recognition properties, being involved in biological mechanisms such as cell-surface receptor recognition or gene silencing. For their use in human therapy for drug or gene delivery, the cell membrane remains a barrier, but this can be obviated by grafting a hydrophobic tail to the oligonucleotide. Here we demonstrate that two oligonucleotides, one consisting of 12 guanosine units (G(12)), and the other one consisting of five adenosine and seven guanosine (A(5)G(7)) units, when functionalized with poly(butadiene), namely PB-G(12) and PB-A(5)G(7), can be inserted into Langmuir monolayers of dipalmitoyl phosphatidyl choline (DPPC), which served as a cell membrane model. PB-G(12) and PB-A(5)G(7) were found to affect the DPPC monolayer even at high surface pressures. The effects from PB-G(12) were consistently stronger, particularly in reducing the elasticity of the DPPC monolayers, which may have important biological implications. Multilayers of DPPC and nucleotide-based copolymers could be adsorbed onto solid supports, in the form of Y-type LB films, in which the molecular-level interaction led to lower energies in the vibrational spectra of the nucleotide-based copolymers. This successful deposition of solid films opens the way for devices to be produced which exploit the molecular recognition properties of the nucleotides. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
To evaluate the cytotoxicity of PDT (photodynamic therapy) with Photogem (R) associated to blue LED (light-emitting diode) on L929 and MDPC-23 cell cultures, 30000 cells/cm(2) were seeded in 24-well plates for 48 h, incubated with Photogem (R) (10, 25 or 50 mg/l) and irradiated with an LED source (460 +/- 3 nm; 22 mW/cm(2)) at two energy densities (25.5 or 37.5 J/cm(2)). Cell metabolism was evaluated by the MTT (methyltetrazolium) assay (Dunnet`s post hoc tests) and cell morphology by SEM (scanning electron microscopy). Flow cytometry analysed the type of PDT-induced cell death as well and estimated intracellular production of ROS (reactive oxygen species). There was a statistically significant decrease of mitochondrial activity (90% to 97%) for all Photogem (R) concentrations associated to blue LED, regardless of irradiation time. It was also demonstrated that the mitochondrial activity was not recovered after 12 or 24 h, characterizing irreversible cell damage. PDT-treated cells presented an altered morphology with ill-defined limits. In both cell lines, there was a predominance of necrotic cell death and the presence of Photogem (R) or irradiation increased the intracellular levels of ROS. PDT caused severe toxic effects in normal cell culture, characterized by the reduction of the mitochondrial activity, morphological alterations and induction of necrotic cell death.
Resumo:
The count intercept is a robust method for the numerical analysis of fabrics Launeau and Robin (1996). It counts the number of intersections between a set of parallel scan lines and a mineral phase, which must be identified on a digital image. However, the method is only sensitive to boundaries and therefore supposes the user has some knowledge about their significance. The aim of this paper is to show that a proper grey level detection of boundaries along scan lines is sufficient to calculate the two-dimensional anisotropy of grain or crystal distributions without any particular image processing. Populations of grains and crystals usually display elliptical anisotropies in rocks. When confirmed by the intercept analysis, a combination of a minimum of 3 mean length intercept roses, taken on 3 more or less perpendicular sections, allows the calculation of 3-dimensional ellipsoids and the determination of their standard deviation with direction and intensity in 3 dimensions as well. The feasibility of this quick method is attested by numerous examples on theoretical objects deformed by active and passive deformation, on BSE images of synthetic magma flow, on drawing or direct analysis of thin section pictures of sandstones and on digital images of granites directly taken and measured in the field. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We present approximation algorithms for the three-dimensional strip packing problem, and the three-dimensional bin packing problem. We consider orthogonal packings where 90 degrees rotations are allowed. The algorithms we show for these problems have asymptotic performance bounds 2.64, and 4.89, respectively. These algorithms are for the more general case in which the bounded dimensions of the bin given in the input are not necessarily equal (that is, we consider bins for which the length. the width and the height are not necessarily equal). Moreover, we show that these problems-in the general version-are as hard to approximate as the corresponding oriented version. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The coordination polymer [Cu(Pd(CN)(4))(pn)](n) (pn = 1,3-diaminopropane) has been synthesized and characterized by elemental analysis, infrared spectroscopy and single-crystal X-ray diffraction. The crystal structure showed that three cyano groups of each [Pd(CN)(4)] unit bridge Cu(II) centers leading to the formation of a three-dimensional network. A series of bifurcated hydrogen bonds between the amino groups of the diamine and the nonbridging cyano groups of the cyanometallate result in the organization of suprarnolecular chains and rings along the polymer. (c) 2008 Elsevier B.V. All rights reserved.