1000 resultados para Swift ion
Resumo:
Uranium ion beams were produced from electron cyclotron resonance (ECR) ion sources by sputtering method this year at the Institute of Modern Physics. At first, we chose the Lanzhou ECR No. 3 ion source to implement the production experiment of U ion beams. Finally, 11 e mu A of U28+, 5 e mu A of U32+, and 1.5 e mu A of U35+ were obtained. A U26+ ion beam produced by the LECR2 ion source was accelerated successfully by the cyclotron. This means that the Heavy Ion Research Facility in Lanzhou (HIRFL) has accomplished the acceleration of the ion beam of the heaviest element according to the designed parameters. The Lanzhou ECR ion source No. 2 (LECR2), which was built in 1997, has served the HIRFL for eight years and needed to be upgraded to provide more intense high charge state ion beams for HIRFL cooling storage ring. We started the upgrading project of LECR2 last year, and the modified design just has been finished. (c) 2006 American Institute of Physics.
Resumo:
In order to diagnose the electron cyclotron resonance (ECR) plasma, electron bremsstrahlung spectra were measured by a HPGe detector on Lanzhou ECR Ion Source No. 3 at IMP. The ion source was operated with argon under various working conditions, including different microwave power, mixing gas, extraction high voltage (HV), and so on. Some of the measured spectra are presented in this article. The dependence of energetic electron population on mixing gas and extraction HV is also described. Additionally, we are looking forward to further measurements on SECRAL (Superconducting ECR Ion Source with Advanced design at Lanzhou).
Resumo:
To study the injection of additional electrons from an external electron gun into the plasma of a Penning ionization gauge (PIG) ion source, a test bench for the external electron-beam enhancement of the PIG (E-PIG) ion source was set up. A source magnet assembly was built to satisfy the request for magnetic field configuration of the E-PIG ion source. Numerical calculations have been done to optimize the magnetic field configuration so as to fit the primary electrons to be fed into the PIG discharge chamber along the spreading magnetic field lines. Many possible methods for improving the performance and stability of the PIG ion source have been used in the E-PIG ion source, including the use of multicrystal LaB6 cathode and optimized axial magnetic field. This article presents a detailed design of the E-PIG ion source. Substantial enhancement of ion charge state is expected to be observed which demonstrates that the E-PIG is a viable alternative to other much more costly and difficult to operate devices for the production of intense ion beams of higher charge state.
Resumo:
Superconducting electron cyclotron resonance (ECR) ion source with advanced design in Lanzhou (SECRAL) is a next generation ECR ion source and aims for developing a very compact superconducting ECR ion source with a structure and high performances for highly charged ion-beam production. The ion source was designed to be operated at 18 GHz at initial operation and finally will be extended to 28 GHz. The superconducting magnet confinement configuration of the ion source consists of three axial solenoid coils and six sextupole coils with a cold iron structure as field booster and clamping. At full excitation, this magnet assembly can produce peak mirror fields on the axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. What is different from the traditional design, such as LBNL VENUS and LNS SERSE, is that the three axial solenoid coils are located inside of the sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. SECRAL may open the way for building a compact and high-performance 18-28 GHz superconducting ECR ion source. Very preliminary commissioning results are promising. Detailed design, construction issues and very preliminary test results of the ion source at 18 GHz are presented.
Resumo:
With a latest developed electric-sweep scanner system, we have done a lot of experiments for studying this scanner system and ion beam emittance of electron cyclotron resonance (ECR) ion source. The electric-sweep scanner system was installed on the beam line of Lanzhou electron resonance ion source No. 3 experimental platform of Institute of Modem Physics. The repetition experiments have proven that the system is a relatively dependable and reliable emittance scanner, and its experiment error is about 10%. We have studied the influences of the major parameters of ECR ion source on the extracted ion beam emittance. The typical results of the experiments and the conclusions are presented in this article.
Resumo:
In the present work the photoluminescence (PL) character of sapphire implanted with 180 keV Xe and irradiated with 308 MeV Xe ions was studied. The virgin, implanted and irradiated samples were investigated by PL and Fourier transform infrared (FTIR) spectra measurements. The obtained PL spectra showed the maximum emission bands at 2.75, 3.0 and 3.26 eV for the implanted fluence of 1.0 x 10(15) ions/cm(2) and at 2.4 and 3.47 eV for the irradiated fluence of 1.0 x 10(13) ions/cm(2). The FTIR spectra showed a broaden absorption band between 460 and 630 cm(-1), indicating that strong damaged region formed in Al2O3.
Resumo:
A simple model has been developed within the independent-particle model (IPM) based on the Bohr-Lindhard model and classical statistical model. Cross sections for transfer ionization of helium by ions A(q+) (q = 1-3) are calculated for impact energies between 10 and 6000 keV/u. The calculated cross sections are in good agreement with the experimental data of helium by He(1-2)+ and Li(1-3)+.
Resumo:
ZnO films were deposited on (100) Si substrate by radio frequency magnetron sputtering. These films were irradiated at room temperature with 308 MeV Xe-ions to a fluence of 1.0 x 10(12), 1.0 x 10(13) or 1.0 x 10(14) Xe/cm(2). Then the samples were investigated using RBS, XRD, FESEM and PL analyses. The obtained experimental results showed that the deposited ZnO films were highly c-axis orientated and of high purity, 308 MeV Xe-ion irradiations could not change the c-axis oriented. The topography and PL properties of the ZnO films varied with increasing the Xe-ion irradiation fluence. For 1.0 x 10(13) or 1.0 x 10(14) Xe/cm(2) irradiated samples, surface cracks were observed. Furthermore, it was found that the 1.0 x 10(14) Xe/cm(2) irradiated sample exhibiting the strongest PL ability. The modification of structure and PL properties induced by 308 MeV Xe-ion irradiations were briefly discussed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We review recent progress in the determination of the subsaturation density behavior of the nuclear symmetry energy from heavy-ion collisions as well as the theoretical progress in probing the high density behavior of the symmetry energy in heavy-ion reactions induced by high energy radioactive beams. We further discuss the implications of these results for the nuclear effective interactions and the neutron skin thickness of heavy nuclei.
Resumo:
Hard photons from neutron-proton bremsstrahlung in intermediate energy heavy-ion reactions are examined as a potential probe of the nuclear symmetry energy within a transport model. Effects of the symmetry energy on the yields and spectra of hard photons are found to be generally smaller than those due to the currently existing uncertainties of both the in-medium nucleon-nucleon cross sections and the photon production probability in the elementary process pn -> pn gamma. Very interestingly, nevertheless, the ratio of hard photon spectra R-1/2(gamma) from two reactions using isotopes of the same element is not only approximately independent of these uncertainties but also quite sensitive to the symmetry energy. For the head-on reactions of Sn-132 + Sn-124 and Sn-112 + Sn-112 at E-beam/A = 50 MeV, for example, the R-1/2(gamma) displays a rise up to 15% when the symmetry energy is reduced by about 20% at rho = 1.3 rho(0) which is the maximum density reached in these reactions. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The nuclear stopping and the radial flow are investigated with an isospin-dependent quantum molecular dynamics (IQMD) model for Ni + Ni and Pb + Pb from 0.4 to and 1.2 GeV/u. The expansion velocity as well as the degree of nuclear stopping are higher in the heavier system at all energies. The ratio between the flow energy and the total available energy in center of mass of the colliding systems exhibits a positive correlation to the degree of nuclear stopping. The maximum density (rho(max)) achieved in the compression is comparable to the hydrodynamics prediction only if the non-zero collision time effect is taken into account in the later. Due to the partial transparency, the growing of the maximum density achieved in the central region of the fireball with the increase of beam energy becomes gradually flat in the 1 GeV/u energy regime. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The shell correction is proposed in the improved isospin dependent quantum molecular dynamics (Im-IQMD) model, which plays an important role in heavy-ion fusion reactions near Coulomb barrier. By using the ImIQMD model, the static and dynamical fusion barriers, dynamical barrier distribution in the fusion reactions are analyzed systematically. The fusion and capture excitation functions for a series of reaction systems are calculated and compared with experimental data. It is found that the fusion cross sections for neutron-rich systems increase obviously, and the strong shell effects of two colliding nuclei result in a decrease of the fusion cross sections at the sub-barrier energies. The lowering of the dynamical fusion barriers favors the enhancement of the sub-barrier fusion cross sections, which is related to the nucleon transfer and the neck formation in the fusion reactions.
Resumo:
Carbon ion radiotherapy/Fractionated irradiation/R-BE/Premature terminal differentiation. To investigate the influence of fractionation on cell survival and radiation induced premature differentiation as markers for early and late effects after X-rays and carbon irradiation. Normal human fibroblasts NHDF, AG1522B and WI-38 were irradiated With 250 kV X-rays, or 266 MeV/u, 195 MeV/u and I I MeV/u carbon ions. Cytotoxicity was measured by a clonogenic survival assay or by determination of the differentiation pattern. Experiments with high-energy carbon ions show that fractionation induced repair effects are similar to photon irradiation. The RBE10 values for clonogenic survival are 1.3 and 1.6 for irradiation in one or two fractions for NHDF cells and around 1.2 for AG1522B cells regardless of the fractionation scheme. The RBE for a doubling of post mitotic fibroblasts (PMF) in the population is I for both single and two fractionated irradiation of NHDF cells. Using I I MeV/u carbon ions, no repair effect can be seen in WI-38 cells. The RBE10 for clonogenic survival is 3.2 for single irradiation and 4.9 for two fractionated irradiations. The RBE for a doubling of PMF is 3.1 and 5.0 for single and two fractionated irradiations, respectively. For both cell lines the effects of high-energy carbon ions representing the irradiation of the skin and the normal tissue in the entrance channel are similar to the effects of X-rays. The fractionation effects are maintained. For the lower energy, which is representative for the irradiation of the tumor region. RBE is enhanced for clonogenic survival as well as for premature terminal differentiation. Fractionation effects are not detectable. Consequently, the therapeutic ratio is significantly enhanced by fractionated irradiation with carbon ions.
Resumo:
The principle and technique details of recoil ion momentum imaging are discussed and summarized. The recoil ion momentum spectroscopy built at the Institute of Modern Physics (Lanzhou) is presented. The first results obtained at the setup are analyzed. For 30 keV He2+ on He collision, it is found that the capture of single electron occurs dominantly into the first excited states, and the related scattering angle results show that the ground state capture occurs at large impact parameters, while the capture into excited states occurs at small impact parameters. The results manifest the collision dynamics for the sub-femto-second process can be studied through the techniques uniquely. Finally, the future possibilities of applications of the recoil ion momentum spectroscopy in other fields are outlined.
Resumo:
The status of heavy-ion cancer therapy has been reviewed. The existing and constructing heavy-ion beam facilities for cancer therapy in the world are introduced. The first clinical trials of superficially placed tumor therapy at heavy ion research facility in Lanzhou (HIRFL) are presented.