897 resultados para Semiconducting silicon compounds
Resumo:
This study describes the antichagasic potential of five compounds isolated from leaves of Piper crassinervium (Piperaceae). Two prenylated benzoic acid derivatives, one prenylated hydroquinone and two flavanones, were evaluated. The in vitro trypanocidal activity was determined against epimastigote forms of Trypanosoma cruzi (Y strain), the etiologic agent of Chagas disease. The most active compound was the prenylated hydroquinone [1,4-dihydroxy-2-(3(0),7(0)-dimethyl-1(0)-oxo-2(0)-E,6(0)-octadienyl)benzene] with an IC(50) value of 6.10 g mL(-1), which was in the same order of activity if compared with the positive control benznidazole (IC(50) = 1.60 mu g mL(-1)). This is the first report of trypanocidal activity for prenylated hydroquinone and benzoic acid derivatives.
Resumo:
Flash points (T(FP)) of organic compounds are calculated from their flash point numbers, N(FP), with the relationship T(FP) = 23.369N(FP)(2/3) + 20.010N(FP)(1/3) + 31.901. In turn, the N(FP) values can be predicted from boiling point numbers (Y(BP)) and functional group counts with the equation N(FP) = 0.974Y(BP) + Sigma(i)n(i)G(i) + 0.095 where G(i) is a functional group-specific contribution to the value of N(FP) and n(i) is the number of such functional groups in the structure. For a data set consisting of 1000 diverse organic compounds, the average absolute deviation between reported and predicted flash points was less than 2.5 K.
Resumo:
In this work, we studied the photocatalytic and the structural aspects of silicon wafers doped with Au and Cu submitted to thermal treatment. The materials were obtained by deposition of metals on Si using the sputtering method followed by fast heating method. The photocatalyst materials were characterized by synchrotron-grazing incidence X-ray fluorescence, ultraviolet-visible spectroscopy, X-ray diffraction, and assays of H(2)O(2) degradation. The doping process decreases the optical band gap of materials and the doping with Au causes structural changes. The best photocatalytic activity was found for thermally treated material doped with Au. Theoretical calculations at density functional theory level are in agreement with the experimental data.
Resumo:
Enantioselective creation of benzylic quaternary centers still is a continuous challenge to many synthetic organic chemists. Among the existing methods for installation of this type of center, the direct asymmetric alpha-arylation of carbonyl compounds is very attractive due to the ready availability of the coupling substrates. Herein, we present some new tools to the catalytic asymmetric alpha-arylation of carbonyl compounds that overcame many of the drawbacks posted in previous methods for this type of reaction.
Resumo:
The kinetic resolution of (+/-)-iodophenylethanols was carried out using lipase from Candida antarctica and in some cases the enantiomeric excesses were high (up to >98%). Enantiomerically enriched (S)-iodophenylethanols produced by the enzymatic resolution process were used in the synthesis of chiral biphenyl compounds by the Suzuki reaction with good yields (63-65%). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This work investigates neural network models for predicting the trypanocidal activity of 28 quinone compounds. Artificial neural networks (ANN), such as multilayer perceptrons (MLP) and Kohonen models, were employed with the aim of modeling the nonlinear relationship between quantum and molecular descriptors and trypanocidal activity. The calculated descriptors and the principal components were used as input to train neural network models to verify the behavior of the nets. The best model for both network models (MLP and Kohonen) was obtained with four descriptors as input. The descriptors were T(5) (torsion angle), QTS1 (sum of absolute values of the atomic charges), VOLS2 (volume of the substituent at region B) and HOMO-1 (energy of the molecular orbital below HOMO). These descriptors provide information on the kind of interaction that occurs between the compounds and the biological receptor. Both neural network models used here can predict the trypanocidal activity of the quinone compounds with good agreement, with low errors in the testing set and a high correctness rate. Thanks to the nonlinear model obtained from the neural network models, we can conclude that electronic and structural properties are important factors in the interaction between quinone compounds that exhibit trypanocidal activity and their biological receptors. The final ANN models should be useful in the design of novel trypanocidal quinones having improved potency.
Resumo:
The structure of 7,4`-dimethoxy-3`-acetylflavone (tithonin-Ac) has been determined by X-ray diffraction and its geometry is compared with optimized geometrical parameters obtained by means of density functional theory at the B3LYP/6-311++G(d,p) level of calculation. in addition, vertical ionization potential (IPv) and acidity for tithonin-Ac and two derivatives have been also calculated. Calculations of spin densities were also performed for the radical formed by the electron abstraction of other flavones. The unpaired electron is located on C3 carbon atom (21-25%). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Arylpiperazine compounds are promising 5-HT1A receptor ligands that can contribute for accelerating the onset of therapeutic effect of selective serotonin reuptake inhibitors. In the present work, the chemometric methods HCA, PCA, KNN, SIMCA and PLS were employed in order to obtain SAR and QSAR models relating the structures of arylpiperazine compounds to their 5-HT1A receptor affinities. A training set of 52 compounds was used to construct the models and the best ones were obtained with nine topological descriptors. The classification and regression models were externally validated by means of predictions for a test set of 14 compounds and have presented good quality, as verified by the correctness of classifications, in the case of pattern recognition studies, and b, the high correlation coefficients (q(2) = 0.76, r(2) = 0.83) and small prediction errors for the PLS regression. Since the results are in good agreement with previous SAR studies, we can suggest that these findings can help in the search for 5-HT1A receptor ligands that are able to improve antidepressant treatment. (c) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
The presence of paramagnetic species in the aqueous ring opening metathesis polymerizations of the exo,exo-7-oxabicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid monomer with RuCl(3) and K(2)[RuCl(5)H(2)O] compounds was studied using ESR techniques. It was observed that the intensities of the Ru(III) signals in the ESR spectra decrease on the time scale of the induction period so that the ROMP can take place. The intensity of the Ru(III) signal almost disappeared 50 min after reacting with K(2)[RuCl(5)H(2)O] and after 100 mm in the case of RuCl(3). Reactions of the cis-[Ru(NH(3))(4)(H(2)O)(2)](tfms)(3) and [Ru(NH(3))(5)H(2)O](tfms)(3) complexes with the monomer and different organic compounds representing the organic functions in the monomer (furan, norbornene, but-2-ene-1,4-diol and formic, acetic, oxalic and maleic acids) were also monitored by ESR and UV/vis spectra. It was deduced that the organic acids provide the disappearance of the Ru(III) signal. The proton NMR relaxation times of the residual water in D(2)O for reactions with oxalic acid suggested that the presence of paramagnetic ions in the solution decreases along with
Resumo:
Cannabinoid compounds have widely been employed because of its medicinal and psychotropic properties. These compounds are isolated from Cannabis sativa (or marijuana) and are used in several medical treatments, such as glaucoma, nausea associated to chemotherapy, pain and many other situations. More recently, its use as appetite stimulant has been indicated in patients with cachexia or AIDS. In this work, the influence of several molecular descriptors on the psychoactivity of 50 cannabinoid compounds is analyzed aiming one obtain a model able to predict the psychoactivity of new cannabinoids. For this purpose, initially, the selection of descriptors was carried out using the Fisher`s weight, the correlation matrix among the calculated variables and principal component analysis. From these analyses, the following descriptors have been considered more relevant: E(LUMO) (energy of the lowest unoccupied molecular orbital), Log P (logarithm of the partition coefficient), VC4 (volume of the substituent at the C4 position) and LP1 (Lovasz-Pelikan index, a molecular branching index). To follow, two neural network models were used to construct a more adequate model for classifying new cannabinoid compounds. The first model employed was multi-layer perceptrons, with algorithm back-propagation, and the second model used was the Kohonen network. The results obtained from both networks were compared and showed that both techniques presented a high percentage of correctness to discriminate psychoactive and psychoinactive compounds. However, the Kohonen network was superior to multi-layer perceptrons.
Resumo:
In the treatment of cyclometallated dimer [Pd(dmba)(mu-Cl)](2) (dmba = N,N-dimethylbenzylamine) with AgNO(3) and acetonitrile the result was the monomeric cationic precursor [Pd(dmba)(NCMe)(2)](NO(3)) (NCMe=acetonitrile) (1). Compound 1 reacted with m-nitroaniline (m-NAN) and pirazine (pz), originating [Pd(dmba)(ONO(2))(m-NAN)] (2) and [{Pd(dmba)(ONO(2))}(2)(mu-pz)] center dot H(2)O (3), respectively. These compounds were characterized by elemental analysis, IR and NMR spectroscopy. The IR spectra of (2-3) display typical bands of monodentade O-bonded nitrate groups, whereas the NMR data of 3 are consistent with the presence of bridging pyrazine ligands. The structure of compound 3 was determined by Xray diffraction analysis. This packing consists of a supramolecular chain formed by hydrogen bonding between the water molecule and nitrato ligands of two consecutive [Pd(2)(dmba)(2)(ONO(2))2(mu-pz)] units. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In this work, two different docking programs were used, AutoDock and FlexX, which use different types of scoring functions and searching methods. The docking poses of all quinone compounds studied stayed in the same region in the trypanothione reductase. This region is a hydrophobic pocket near to Phe396, Pro398 and Leu399 amino acid residues. The compounds studied displays a higher affinity in trypanothione reductase (TR) than glutathione reductase (GR), since only two out of 28 quinone compounds presented more favorable docking energy in the site of human enzyme. The interaction of quinone compounds with the TR enzyme is in agreement with other studies, which showed different binding sites from the ones formed by cysteines 52 and 58. To verify the results obtained by docking, we carried out a molecular dynamics simulation with the compounds that presented the highest and lowest docking energies. The results showed that the root mean square deviation (RMSD) between the initial and final pose were very small. In addition, the hydrogen bond pattern was conserved along the simulation. In the parasite enzyme, the amino acid residues Leu399, Met400 and Lys402 are replaced in the human enzyme by Met406, Tyr407 and Ala409, respectively. In view of the fact that Leu399 is an amino acid of the Z site, this difference could be explored to design selective inhibitors of TR.
Resumo:
A Simple way to improve solar cell efficiency is to enhance the absorption of light and reduce the shading losses. One of the main objectives for the photovoltaic roadmap is the reduction of metalized area on the front side of solar cell by fin lines. Industrial solar cell production uses screen-printing of metal pastes with a limit in line width of 70-80 μm. This paper will show a combination of the technique of laser grooved buried contact (LGBC) and Screen-printing is able to improve in fine lines and higher aspect ratio. Laser grooving is a technique to bury the contact into the surface of silicon wafer. Metallization is normally done with electroless or electrolytic plating method, which a high cost. To decrease the relative cost, more complex manufacturing process was needed, therefore in this project the standard process of buried contact solar cells has been optimized in order to gain a laser grooved buried contact solar cell concept with less processing steps. The laser scribing process is set at the first step on raw mono-crystalline silicon wafer. And then the texturing etch; phosphorus diffusion and SiNx passivation process was needed once. While simultaneously optimizing the laser scribing process did to get better results on screen-printing process with fewer difficulties to fill the laser groove. This project has been done to make the whole production of buried contact solar cell with fewer steps and could present a cost effective opportunity to solar cell industries.
Resumo:
O maior objetivo deste trabalho foi estudar os efeitos da composição dos fluxos para arco submerso sobre algumas importantes características de um metal de solda ferrítico, como composição química, microestrutura, propriedades mecânicas e geometria do cordão. Para realizar tal pesquisa, vinte oito fluxos aglomerados foram elaborados de compostos de pureza comercial e utilizados em soldagens ao aorco submerso, mantendo constante todas as demais condições de soldagem. Houve uma notável influência da composição química e do índice de basicidade dos fluxos sobre os níveis de oxig~enio, silício e manganês do metal de solda. Um modelo termodinâmico, baseado no conceito de potencial de oxigênio, foi proposto para explicar as reações gás-meta-escória ocorrendo durante a soldagem. Este modelo mostrou-se usável para as reações entre silício, oxigênio e carbono, permitindo um melhor entendimento das mesmas. A composição química do metal de solda pôde ser relacionada a sua microestrutura, através de metalografia quantitativa. Foi observado que oxigênio, silício, manganês e titânio têm grande influência sobre ela. A fase mais tenaz encontrada foi a ferrita acicular. A respeito da geometria do cordão, a sílica mostrou o efeito mais forte, com os outros compostos influenciando somente o acabamento do cordão soldado.
Resumo:
An analytical procedure based on manual dynamic headspace solid-phase microextraction (HS-SPME) method and the conventional extraction method by liquid–liquid extraction (LLE), were compared for their effectiveness in the extraction and quantification of volatile compounds from commercial whiskey samples. Seven extraction solvents covering a wide range of polarities and two SPME fibres coatings, has been evaluated. The highest amounts extracted, were achieved using dichloromethane (CH2Cl2) by LLE method (LLECH2Cl2)(LLECH2Cl2) and using a CAR/PDMS fibre (SPMECAR/PDMS) in HS-SPME. Each method was used to determine the responses of 25 analytes from whiskeys and calibration standards, in order to provide sensitivity comparisons between the two methods. Calibration curves were established in a synthetic whiskey and linear correlation coefficient (r ) were greater than 0.9929 for LLECH2Cl2LLECH2Cl2 and 0.9935 for SPMECAR/PDMS, for all target compounds. Recoveries greater than 80% were achieved. For most compounds, precision (expressed by relative standard deviation, R.S.D.) are very good, with R.S.D. values lower than 14.78% for HS-SPME method and than 19.42% for LLE method. The detection limits ranged from 0.13 to 19.03 μg L−1 for SPME procedure and from 0.50 to 12.48 μg L−1 for LLE. A tentative study to estimate the contribution of a specific compound to the aroma of a whiskey, on the basis of their odour activity values (OAV) was made. Ethyl octanoate followed by isoamyl acetate and isobutyl alcohol, were found the most potent odour-active compounds.