869 resultados para Reuse of treated wastewater
Resumo:
This article presents an approach to improve and monitor the behavior of a skid-steering rover on rough terrains. An adaptive locomotion control generates speeds references to avoid slipping situations. An enhanced odometry provides a better estimation of the distance travelled. A probabilistic classification procedure provides an evaluation of the locomotion efficiency on-line, with a detection of locomotion faults. Results obtained with a Marsokhod rover are presented throughout the paper
Resumo:
Whole image descriptors have recently been shown to be remarkably robust to perceptual change especially compared to local features. However, whole-image-based localization systems typically rely on heuristic methods for determining appropriate matching thresholds in a particular environment. These environment-specific tuning requirements and the lack of a meaningful interpretation of these arbitrary thresholds limits the general applicability of these systems. In this paper we present a Bayesian model of probability for whole-image descriptors that can be seamlessly integrated into localization systems designed for probabilistic visual input. We demonstrate this method using CAT-Graph, an appearance-based visual localization system originally designed for a FAB-MAP-style probabilistic input. We show that using whole-image descriptors as visual input extends CAT-Graph’s functionality to environments that experience a greater amount of perceptual change. We also present a method of estimating whole-image probability models in an online manner, removing the need for a prior training phase. We show that this online, automated training method can perform comparably to pre-trained, manually tuned local descriptor methods.
Resumo:
Visual localization in outdoor environments is often hampered by the natural variation in appearance caused by such things as weather phenomena, diurnal fluctuations in lighting, and seasonal changes. Such changes are global across an environment and, in the case of global light changes and seasonal variation, the change in appearance occurs in a regular, cyclic manner. Visual localization could be greatly improved if it were possible to predict the appearance of a particular location at a particular time, based on the appearance of the location in the past and knowledge of the nature of appearance change over time. In this paper, we investigate whether global appearance changes in an environment can be learned sufficiently to improve visual localization performance. We use time of day as a test case, and generate transformations between morning and afternoon using sample images from a training set. We demonstrate the learned transformation can be generalized from training data and show the resulting visual localization on a test set is improved relative to raw image comparison. The improvement in localization remains when the area is revisited several weeks later.
Resumo:
A microgrid may contain a large number of distributed generators (DGs). These DGs can be either inertial or non-inertial, either dispatchable or non-dispatchable. Moreover, the DGs may operate in plug and play fashion. The combination of these various types of operation makes the microgrid control a challenging task, especially when the microgrid operates in an autonomous mode. In this paper, a new control algorithm for converter interfaced (dispatchable) DG is proposed which facilitates smooth operation in a hybrid microgrid containing inertial and non-inertial DGs. The control algorithm works satisfactorily even when some of the DGs operate in plug and play mode. The proposed strategy is validated through PSCAD simulation studies.
Resumo:
Digital tablets have been identified as a tool for enabling blended learning and supporting online teaching and learning. A small scale trial was undertaken to assess the effectiveness of this technology when applied to power engineering education. Critical findings and experiences gained from this trial, including potential benefits, presentation techniques and the resulting student feedback are presented in this paper.
Resumo:
This paper presents a study done into the effectiveness of using local acceleration measurements vs. remote angle measurements in providing stabilising control via SVCs following large disturbances. The system studied was an analogue of the Queensland-New South Wales Interconnection (QNI) and involved the control of an existing Static Var Compensators (SVC) at Sydney West. This study is placed in the context of wide area controls for large systems using aggregated models for groups of machines.
Resumo:
This paper addresses the voltage rise constraints that are initiated from increased renewable generation resources in low voltage distribution networks. In this paper, an approach which is able to mitigate these voltage rise constraints and allow for increased distributed generator penetration is presented. The proposed approach involves utilizing the distribution transformers static tap changer to reduce the distribution feeder voltage setpoint. The proposed approach is modeled on a generic low voltage distribution network using the PSS SINCAL© simulation software package and is also implemented in a real low voltage distribution network to verify its practicality. Results indicate that this approach can be implemented to mitigate the voltage rise constraint and increase small-scale embedded generator penetration in a high proportion of low voltage feeders while avoiding any substantial network costs.
Resumo:
We present a novel approach for multi-object detection in aerial videos based on tracking. The proposed method mainly involves three steps. Firstly, the spatial-temporal saliency is employed to detect moving objects. Secondly, the detected objects are tracked by mean shift in the subsequent frames. Finally, the saliency results are fused with the weight map generated by tracking to get refined detection results, and in turn the modified detection results are used to update the tracking models. The proposed algorithm is evaluated on VIVID aerial videos, and the results show that our approach can reliably detect moving objects even in challenging situations. Meanwhile, the proposed method can process videos in real time, without the effect of time delay.
Resumo:
We identify relation completion (RC) as one recurring problem that is central to the success of novel big data applications such as Entity Reconstruction and Data Enrichment. Given a semantic relation, RC attempts at linking entity pairs between two entity lists under the relation. To accomplish the RC goals, we propose to formulate search queries for each query entity α based on some auxiliary information, so that to detect its target entity β from the set of retrieved documents. For instance, a pattern-based method (PaRE) uses extracted patterns as the auxiliary information in formulating search queries. However, high-quality patterns may decrease the probability of finding suitable target entities. As an alternative, we propose CoRE method that uses context terms learned surrounding the expression of a relation as the auxiliary information in formulating queries. The experimental results based on several real-world web data collections demonstrate that CoRE reaches a much higher accuracy than PaRE for the purpose of RC.
Resumo:
Recent advances in computer vision and machine learning suggest that a wide range of problems can be addressed more appropriately by considering non-Euclidean geometry. In this paper we explore sparse dictionary learning over the space of linear subspaces, which form Riemannian structures known as Grassmann manifolds. To this end, we propose to embed Grassmann manifolds into the space of symmetric matrices by an isometric mapping, which enables us to devise a closed-form solution for updating a Grassmann dictionary, atom by atom. Furthermore, to handle non-linearity in data, we propose a kernelised version of the dictionary learning algorithm. Experiments on several classification tasks (face recognition, action recognition, dynamic texture classification) show that the proposed approach achieves considerable improvements in discrimination accuracy, in comparison to state-of-the-art methods such as kernelised Affine Hull Method and graph-embedding Grassmann discriminant analysis.
Resumo:
Voltage rise is the main issue which limits the capacity of Low Voltage (LV) network to accommodate more Renewable Energy (RE) sources. In addition, voltage drop at peak load period is a significant power quality concern. This paper proposes a new robust voltage support strategy based on distributed coordination of multiple distribution static synchronous compensators (DSTATCOMs). The study focuses on LV networks with PV as the RE source for customers. The proposed approach applied to a typical LV network and its advantages are shown comparing with other voltage control strategies.
Resumo:
In this paper, we present an approach for image-based surface classification using multi-class Support Vector Machine (SVM). Classifying surfaces in aerial images is an important step towards an increased aircraft autonomy in emergency landing situations. We design a one-vs-all SVM classifier and conduct experiments on five data sets. Results demonstrate consistent overall performance figures over 88% and approximately 8% more accurate to those published on multi-class SVM on the KTH TIPS data set. We also show per-class performance values by using normalised confusion matrices. Our approach is designed to be executed online using a minimum set of feature attributes representing a feasible and ready-to-deploy system for onboard execution.
Resumo:
This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e., the autonomous vehicles' ability to make appropriate driving decisions in city road traffic situations. The paper explains the overall controls system architecture, the decision making task decomposition, and focuses on how Multiple Criteria Decision Making (MCDM) is used in the process of selecting the most appropriate driving maneuver from the set of feasible ones. Experimental tests show that MCDM is suitable for this new application area.
Resumo:
Loop detectors are widely used on the motorway networks where they provide point speed and traffic volumes. Models have been proposed for temporal and spatial generalization of speed for average travel time estimation. Advancement in technology provides complementary data sources such as Bluetooth MAC Scanner (BMS), detecting the MAC ID of the Bluetooth devices transported by the traveller. Matching the data from two BMS stations provides individual vehicle travel time. Generally, on the motorways loops are closely spaced, whereas BMS are placed few kilometres apart. In this research, we fuse BMSs and loops data to define the trajectories of the Bluetooth vehicles. The trajectories are utilised to estimate the travel time statistics between any two points along the motorway. The proposed model is tested using simulation and validated with real data from Pacific motorway, Brisbane. Comparing the model with the linear interpolation based trajectory provides significant improvements.
Resumo:
With the introduction of the Personally Controlled Health Record (PCEHR), the Australian public is being asked to accept greater responsibility for their healthcare by taking an active role in the management of personal health information. Although well designed, constructed and intentioned, policy and privacy concerns have resulted in an eHealth model that may impact future health sharing requirements. Hence, as a case study for a consumer eHealth initative in the Australian context, eHealth-as-a-Service (eHaaS) serves as a disruptive step in in the aggregation and transformation of health information for use as real-world knowledge. The strategic value of extending the community Health Record Bank (HRB) model lies in the ability to automatically draw on a multitude of relevant data repositories and sources to create a single source of the truth and to engage market forces to create financial sustainability. The opportunity to transform the beleaguered Australian PCEHR into a realisable and sustainable technology consumption model for patient safety is explored. Moreover, the current clerical focus of healthcare practitioners acting in the role of de facto record keepers is renegotiated to establish a shared knowledge creation landscape of action for safer patient interventions. To achieve this potential however requires a platform that will facilitate efficient and trusted unification of all health information available in real-time across the continuum of care. eHaaS provides a sustainable environment and encouragement to realise this potential.