890 resultados para RESOLVENT OF OPERATORS
Resumo:
The ferric uptake regulator protein Fur regulates iron-dependent gene expression in bacteria. In the human pathogen Helicobacter pylori, Fur has been shown to regulate iron-induced and iron-repressed genes. Herein we investigate the molecular mechanisms that control this differential iron-responsive Fur regulation. Hydroxyl radical footprinting showed that Fur has different binding architectures, which characterize distinct operator typologies. On operators recognized with higher affinity by holo-Fur, the protein binds to a continuous AT-rich stretch of about 20 bp, displaying an extended protection pattern. This is indicative of protein wrapping around the DNA helix. DNA binding interference assays with the minor groove binding drug distamycin A, point out that the recognition of the holo-operators occurs through the minor groove of the DNA. By contrast, on the apo-operators, Fur binds primarily to thymine dimers within a newly identified TCATTn10TT consensus element, indicative of Fur binding to one side of the DNA, in the major groove of the double helix. Reconstitution of the TCATTn10TT motif within a holo-operator results in a feature binding swap from an holo-Fur- to an apo-Fur-recognized operator, affecting both affinity and binding architecture of Fur, and conferring apo-Fur repression features in vivo. Size exclusion chromatography indicated that Fur is a dimer in solution. However, in the presence of divalent metal ions the protein is able to multimerize. Accordingly, apo-Fur binds DNA as a dimer in gel shift assays, while in presence of iron, higher order complexes are formed. Stoichiometric Ferguson analysis indicates that these complexes correspond to one or two Fur tetramers, each bound to an operator element. Together these data suggest that the apo- and holo-Fur repression mechanisms apparently rely on two distinctive modes of operator-recognition, involving respectively the readout of a specific nucleotide consensus motif in the major groove for apo-operators, and the recognition of AT-rich stretches in the minor groove for holo-operators, whereas the iron-responsive binding affinity is controlled through metal-dependent shaping of the protein structure in order to match preferentially the major or the minor groove.
Resumo:
In dieser Arbeit aus dem Bereich der Wenig-Nukleonen-Physik wird die neu entwickelte Methode der Lorentz Integral Transformation (LIT) auf die Untersuchung von Kernphotoabsorption und Elektronenstreuung an leichten Kernen angewendet. Die LIT-Methode ermoeglicht exakte Rechnungen durchzufuehren, ohne explizite Bestimmung der Endzustaende im Kontinuum. Das Problem wird auf die Loesung einer bindungzustandsaehnlichen Gleichung reduziert, bei der die Endzustandswechselwirkung vollstaendig beruecksichtigt wird. Die Loesung der LIT-Gleichung wird mit Hilfe einer Entwicklung nach hypersphaerischen harmonischen Funktionen durchgefuehrt, deren Konvergenz durch Anwendung einer effektiven Wechselwirkung im Rahmem des hypersphaerischen Formalismus (EIHH) beschleunigt wird. In dieser Arbeit wird die erste mikroskopische Berechnung des totalen Wirkungsquerschnittes fuer Photoabsorption unterhalb der Pionproduktionsschwelle an 6Li, 6He und 7Li vorgestellt. Die Rechnungen werden mit zentralen semirealistischen NN-Wechselwirkungen durchgefuehrt, die die Tensor Kraft teilweise simulieren, da die Bindungsenergien von Deuteron und von Drei-Teilchen-Kernen richtig reproduziert werden. Der Wirkungsquerschnitt fur Photoabsorption an 6Li zeigt nur eine Dipol-Riesenresonanz, waehrend 6He zwei unterschiedliche Piks aufweist, die dem Aufbruch vom Halo und vom Alpha-Core entsprechen. Der Vergleich mit experimentellen Daten zeigt, dass die Addition einer P-Wellen-Wechselwirkung die Uebereinstimmung wesentlich verbessert. Bei 7Li wird nur eine Dipol-Riesenresonanz gefunden, die gut mit den verfuegbaren experimentellen Daten uebereinstimmt. Bezueglich der Elektronenstreuung wird die Berechnung der longitudinalen und transversalen Antwortfunktionen von 4He im quasi-elastischen Bereich fuer mittlere Werte des Impulsuebertrages dargestellt. Fuer die Ladungs- und Stromoperatoren wird ein nichtrelativistisches Modell verwendet. Die Rechnungen sind mit semirealistischen Wechselwirkungen durchgefuert und ein eichinvarianter Strom wird durch die Einfuehrung eines Mesonaustauschstroms gewonnen. Die Wirkung des Zweiteilchenstroms auf die transversalen Antwortfunktionen wird untersucht. Vorlaeufige Ergebnisse werden gezeigt und mit den verfuegbaren experimentellen Daten verglichen.
Resumo:
The present thesis is a contribution to the multi-variable theory of Bergman and Hardy Toeplitz operators on spaces of holomorphic functions over finite and infinite dimensional domains. In particular, we focus on certain spectral invariant Frechet operator algebras F closely related to the local symbol behavior of Toeplitz operators in F. We summarize results due to B. Gramsch et.al. on the construction of Psi_0- and Psi^*-algebras in operator algebras and corresponding scales of generalized Sobolev spaces using commutator methods, generalized Laplacians and strongly continuous group actions. In the case of the Segal-Bargmann space H^2(C^n,m) of Gaussian square integrable entire functions on C^n we determine a class of vector-fields Y(C^n) supported in complex cones K. Further, we require that for any finite subset V of Y(C^n) the Toeplitz projection P is a smooth element in the Psi_0-algebra constructed by commutator methods with respect to V. As a result we obtain Psi_0- and Psi^*-operator algebras F localized in cones K. It is an immediate consequence that F contains all Toeplitz operators T_f with a symbol f of certain regularity in an open neighborhood of K. There is a natural unitary group action on H^2(C^n,m) which is induced by weighted shifts and unitary groups on C^n. We examine the corresponding Psi^*-algebra A of smooth elements in Toeplitz-C^*-algebras. Among other results sufficient conditions on the symbol f for T_f to belong to A are given in terms of estimates on its Berezin-transform. Local aspects of the Szegö projection P_s on the Heisenbeg group and the corresponding Toeplitz operators T_f with symbol f are studied. In this connection we apply a result due to Nagel and Stein which states that for any strictly pseudo-convex domain U the projection P_s is a pseudodifferential operator of exotic type (1/2, 1/2). The second part of this thesis is devoted to the infinite dimensional theory of Bergman and Hardy spaces and the corresponding Toeplitz operators. We give a new proof of a result observed by Boland and Waelbroeck. Namely, that the space of all holomorphic functions H(U) on an open subset U of a DFN-space (dual Frechet nuclear space) is a FN-space (Frechet nuclear space) equipped with the compact open topology. Using the nuclearity of H(U) we obtain Cauchy-Weil-type integral formulas for closed subalgebras A in H_b(U), the space of all bounded holomorphic functions on U, where A separates points. Further, we prove the existence of Hardy spaces of holomorphic functions on U corresponding to the abstract Shilov boundary S_A of A and with respect to a suitable boundary measure on S_A. Finally, for a domain U in a DFN-space or a polish spaces we consider the symmetrizations m_s of measures m on U by suitable representations of a group G in the group of homeomorphisms on U. In particular,in the case where m leads to Bergman spaces of holomorphic functions on U, the group G is compact and the representation is continuous we show that m_s defines a Bergman space of holomorphic functions on U as well. This leads to unitary group representations of G on L^p- and Bergman spaces inducing operator algebras of smooth elements related to the symmetries of U.
Resumo:
The present thesis is concerned with certain aspects of differential and pseudodifferential operators on infinite dimensional spaces. We aim to generalize classical operator theoretical concepts of pseudodifferential operators on finite dimensional spaces to the infinite dimensional case. At first we summarize some facts about the canonical Gaussian measures on infinite dimensional Hilbert space riggings. Considering the naturally unitary group actions in $L^2(H_-,gamma)$ given by weighted shifts and multiplication with $e^{iSkp{t}{cdot}_0}$ we obtain an unitary equivalence $F$ between them. In this sense $F$ can be considered as an abstract Fourier transform. We show that $F$ coincides with the Fourier-Wiener transform. Using the Fourier-Wiener transform we define pseudodifferential operators in Weyl- and Kohn-Nirenberg form on our Hilbert space rigging. In the case of this Gaussian measure $gamma$ we discuss several possible Laplacians, at first the Ornstein-Uhlenbeck operator and then pseudo-differential operators with negative definite symbol. In the second case, these operators are generators of $L^2_gamma$-sub-Markovian semi-groups and $L^2_gamma$-Dirichlet-forms. In 1992 Gramsch, Ueberberg and Wagner described a construction of generalized Hörmander classes by commutator methods. Following this concept and the classical finite dimensional description of $Psi_{ro,delta}^0$ ($0leqdeltaleqroleq 1$, $delta< 1$) in the $C^*$-algebra $L(L^2)$ by Beals and Cordes we construct in both cases generalized Hörmander classes, which are $Psi^*$-algebras. These classes act on a scale of Sobolev spaces, generated by our Laplacian. In the case of the Ornstein-Uhlenbeck operator, we prove that a large class of continuous pseudodifferential operators considered by Albeverio and Dalecky in 1998 is contained in our generalized Hörmander class. Furthermore, in the case of a Laplacian with negative definite symbol, we develop a symbolic calculus for our operators. We show some Fredholm-criteria for them and prove that these Fredholm-operators are hypoelliptic. Moreover, in the finite dimensional case, using the Gaussian-measure instead of the Lebesgue-measure the index of these Fredholm operators is still given by Fedosov's formula. Considering an infinite dimensional Heisenberg group rigging we discuss the connection of some representations of the Heisenberg group to pseudo-differential operators on infinite dimensional spaces. We use this connections to calculate the spectrum of pseudodifferential operators and to construct generalized Hörmander classes given by smooth elements which are spectrally invariant in $L^2(H_-,gamma)$. Finally, given a topological space $X$ with Borel measure $mu$, a locally compact group $G$ and a representation $B$ of $G$ in the group of all homeomorphisms of $X$, we construct a Borel measure $mu_s$ on $X$ which is invariant under $B(G)$.
Resumo:
Since the development of quantum mechanics it has been natural to analyze the connection between classical and quantum mechanical descriptions of physical systems. In particular one should expect that in some sense when quantum mechanical effects becomes negligible the system will behave like it is dictated by classical mechanics. One famous relation between classical and quantum theory is due to Ehrenfest. This result was later developed and put on firm mathematical foundations by Hepp. He proved that matrix elements of bounded functions of quantum observables between suitable coherents states (that depend on Planck's constant h) converge to classical values evolving according to the expected classical equations when h goes to zero. His results were later generalized by Ginibre and Velo to bosonic systems with infinite degrees of freedom and scattering theory. In this thesis we study the classical limit of Nelson model, that describes non relativistic particles, whose evolution is dictated by Schrödinger equation, interacting with a scalar relativistic field, whose evolution is dictated by Klein-Gordon equation, by means of a Yukawa-type potential. The classical limit is a mean field and weak coupling limit. We proved that the transition amplitude of a creation or annihilation operator, between suitable coherent states, converges in the classical limit to the solution of the system of differential equations that describes the classical evolution of the theory. The quantum evolution operator converges to the evolution operator of fluctuations around the classical solution. Transition amplitudes of normal ordered products of creation and annihilation operators between coherent states converge to suitable products of the classical solutions. Transition amplitudes of normal ordered products of creation and annihilation operators between fixed particle states converge to an average of products of classical solutions, corresponding to different initial conditions.
Resumo:
In this work we investigate the existence of resonances for two-centers Coulomb systems with arbitrary charges in two and three dimensions, defining them in terms of generalized complex eigenvalues of a non-selfadjoint deformation of the two-center Schrödinger operator. After giving a description of the bifurcation of the classical system for positive energies, we construct the resolvent kernel of the operators and we prove that they can be extended analytically to the second Riemann sheet. The resonances are then defined and studied with numerical methods and perturbation theory.
Resumo:
Electrochemical biosensors provide an attractive means to analyze the content of a biological sample due to the direct conversion of a biological event to an electronic signal, enabling the development of cheap, small, portable and simple devices, that allow multiplex and real-time detection. At the same time nanobiotechnology is drastically revolutionizing the biosensors development and different transduction strategies exploit concepts developed in these field to simplify the analysis operations for operators and end users, offering higher specificity, higher sensitivity, higher operational stability, integrated sample treatments and shorter analysis time. The aim of this PhD work has been the application of nanobiotechnological strategies to electrochemical biosensors for the detection of biological macromolecules. Specifically, one project was focused on the application of a DNA nanotechnology called hybridization chain reaction (HCR), to amplify the hybridization signal in an electrochemical DNA biosensor. Another project on which the research activity was focused concerns the development of an electrochemical biosensor based on a biological model membrane anchored to a solid surface (tBLM), for the recognition of interactions between the lipid membrane and different types of target molecules.
Resumo:
Der Globale Wandel ist im Begriff, den Tourismus zu verändern. Die Wechselwirkung von Tourismus und Klimawandel sind beidseitiger Art. Die vorliegende Arbeit zeigt Möglichkeiten der Adaption und einen wandelbaren Fremdenverkehr. Eine Übersicht der gängigen Tourismusmodelle stellt den Stand der Forschung dar. Der Fremdenverkehr ist durch drei Faktoren massiv geprägt: Die Nachfrage und Motivation, die Reisemittler und Veranstalter sowie das Destinationsangebot. Bei der Motivation wirken Motiv und Anreiz Motivationspsychologisch betrachtet auf die Reiseentscheidung deren Grundlage verarbeitete Informationen sind. Reisemittler und Veranstalter haben einen großen Einfluss auf Entscheidungsprozesse. Neue IuK Technologien haben deren Arbeit grundlegend verändert. Das Tourismusangebot wird stark durch die naturräumlichen Gegebenheiten sowie das politische System bestimmt. Überlebenswichtig für die Destination ist die evolutionstheoretisch etrachtete Fitnessmaximierung also Adaption und Wandel, um sich an geänderte Rahmenbedingungen anpassen zu können. Gerade im Bereich des Klimawandels müssen Maßnahmen ergriffen werden. Aber auch die Marktsättigung gerade in Verbindung mit der aktuellen Finanzkrise wirkt besonders schwer auf die Destination. Eine hohes Innovationsvermögen, Trendscanning und der Zusammenschluss in flexiblen Netzwerkclustern können einen Kundenmehrwert erzeugen. Die Fitnessmaximierung ist somit Überlebensziel der Destination und führt zur Kundenzufriedenheit die im Sättigungsmarkt alleinig Wachstum generieren kann.
Resumo:
In this work we will discuss about a project started by the Emilia-Romagna Regional Government regarding the manage of the public transport. In particular we will perform a data mining analysis on the data-set of this project. After introducing the Weka software used to make our analysis, we will discover the most useful data mining techniques and algorithms; and we will show how these results can be used to violate the privacy of the same public transport operators. At the end, despite is off topic of this work, we will spend also a few words about how it's possible to prevent this kind of attack.
Resumo:
The asymptotic safety scenario allows to define a consistent theory of quantized gravity within the framework of quantum field theory. The central conjecture of this scenario is the existence of a non-Gaussian fixed point of the theory's renormalization group flow, that allows to formulate renormalization conditions that render the theory fully predictive. Investigations of this possibility use an exact functional renormalization group equation as a primary non-perturbative tool. This equation implements Wilsonian renormalization group transformations, and is demonstrated to represent a reformulation of the functional integral approach to quantum field theory.rnAs its main result, this thesis develops an algebraic algorithm which allows to systematically construct the renormalization group flow of gauge theories as well as gravity in arbitrary expansion schemes. In particular, it uses off-diagonal heat kernel techniques to efficiently handle the non-minimal differential operators which appear due to gauge symmetries. The central virtue of the algorithm is that no additional simplifications need to be employed, opening the possibility for more systematic investigations of the emergence of non-perturbative phenomena. As a by-product several novel results on the heat kernel expansion of the Laplace operator acting on general gauge bundles are obtained.rnThe constructed algorithm is used to re-derive the renormalization group flow of gravity in the Einstein-Hilbert truncation, showing the manifest background independence of the results. The well-studied Einstein-Hilbert case is further advanced by taking the effect of a running ghost field renormalization on the gravitational coupling constants into account. A detailed numerical analysis reveals a further stabilization of the found non-Gaussian fixed point.rnFinally, the proposed algorithm is applied to the case of higher derivative gravity including all curvature squared interactions. This establishes an improvement of existing computations, taking the independent running of the Euler topological term into account. Known perturbative results are reproduced in this case from the renormalization group equation, identifying however a unique non-Gaussian fixed point.rn
Resumo:
This thesis is focused on Smart Grid applications in medium voltage distribution networks. For the development of new applications it appears useful the availability of simulation tools able to model dynamic behavior of both the power system and the communication network. Such a co-simulation environment would allow the assessment of the feasibility of using a given network technology to support communication-based Smart Grid control schemes on an existing segment of the electrical grid and to determine the range of control schemes that different communications technologies can support. For this reason, is presented a co-simulation platform that has been built by linking the Electromagnetic Transients Program Simulator (EMTP v3.0) with a Telecommunication Network Simulator (OPNET-Riverbed v18.0). The simulator is used to design and analyze a coordinate use of Distributed Energy Resources (DERs) for the voltage/var control (VVC) in distribution network. This thesis is focused control structure based on the use of phase measurement units (PMUs). In order to limit the required reinforcements of the communication infrastructures currently adopted by Distribution Network Operators (DNOs), the study is focused on leader-less MAS schemes that do not assign special coordinating rules to specific agents. Leader-less MAS are expected to produce more uniform communication traffic than centralized approaches that include a moderator agent. Moreover, leader-less MAS are expected to be less affected by limitations and constraint of some communication links. The developed co-simulator has allowed the definition of specific countermeasures against the limitations of the communication network, with particular reference to the latency and loss and information, for both the case of wired and wireless communication networks. Moreover, the co-simulation platform has bee also coupled with a mobility simulator in order to study specific countermeasures against the negative effects on the medium voltage/current distribution network caused by the concurrent connection of electric vehicles.
Resumo:
Resource management is of paramount importance in network scenarios and it is a long-standing and still open issue. Unfortunately, while technology and innovation continue to evolve, our network infrastructure system has been maintained almost in the same shape for decades and this phenomenon is known as “Internet ossification”. Software-Defined Networking (SDN) is an emerging paradigm in computer networking that allows a logically centralized software program to control the behavior of an entire network. This is done by decoupling the network control logic from the underlying physical routers and switches that forward traffic to the selected destination. One mechanism that allows the control plane to communicate with the data plane is OpenFlow. The network operators could write high-level control programs that specify the behavior of an entire network. Moreover, the centralized control makes it possible to define more specific and complex tasks that could involve many network functionalities, e.g., security, resource management and control, into a single framework. Nowadays, the explosive growth of real time applications that require stringent Quality of Service (QoS) guarantees, brings the network programmers to design network protocols that deliver certain performance guarantees. This thesis exploits the use of SDN in conjunction with OpenFlow to manage differentiating network services with an high QoS. Initially, we define a QoS Management and Orchestration architecture that allows us to manage the network in a modular way. Then, we provide a seamless integration between the architecture and the standard SDN paradigm following the separation between the control and data planes. This work is a first step towards the deployment of our proposal in the University of California, Los Angeles (UCLA) campus network with differentiating services and stringent QoS requirements. We also plan to exploit our solution to manage the handoff between different network technologies, e.g., Wi-Fi and WiMAX. Indeed, the model can be run with different parameters, depending on the communication protocol and can provide optimal results to be implemented on the campus network.
Resumo:
The purpose of this study is to analyse the regularity of a differential operator, the Kohn Laplacian, in two settings: the Heisenberg group and the strongly pseudoconvex CR manifolds. The Heisenberg group is defined as a space of dimension 2n+1 with a product. It can be seen in two different ways: as a Lie group and as the boundary of the Siegel UpperHalf Space. On the Heisenberg group there exists the tangential CR complex. From this we define its adjoint and the Kohn-Laplacian. Then we obtain estimates for the Kohn-Laplacian and find its solvability and hypoellipticity. For stating L^p and Holder estimates, we talk about homogeneous distributions. In the second part we start working with a manifold M of real dimension 2n+1. We say that M is a CR manifold if some properties are satisfied. More, we say that a CR manifold M is strongly pseudoconvex if the Levi form defined on M is positive defined. Since we will show that the Heisenberg group is a model for the strongly pseudo-convex CR manifolds, we look for an osculating Heisenberg structure in a neighborhood of a point in M, and we want this structure to change smoothly from a point to another. For that, we define Normal Coordinates and we study their properties. We also examinate different Normal Coordinates in the case of a real hypersurface with an induced CR structure. Finally, we define again the CR complex, its adjoint and the Laplacian operator on M. We study these new operators showing subelliptic estimates. For that, we don't need M to be pseudo-complex but we ask less, that is, the Z(q) and the Y(q) conditions. This provides local regularity theorems for Laplacian and show its hypoellipticity on M.
Resumo:
Mountainous areas are prone to natural hazards like rockfalls. Among the many countermeasures, rockfall protection barriers represent an effective solution to mitigate the risk. They are metallic structures designed to intercept rocks falling from unstable slopes, thus dissipating the energy deriving from the impact. This study aims at providing a better understanding of the response of several rockfall barrier types, through the development of rather sophisticated three-dimensional numerical finite elements models which take into account for the highly dynamic and non-linear conditions of such events. The models are built considering the actual geometrical and mechanical properties of real systems. Particular attention is given to the connecting details between the structural components and to their interactions. The importance of the work lies in being able to support a wide experimental activity with appropriate numerical modelling. The data of several full-scale tests carried out on barrier prototypes, as well as on their structural components, are combined with results of numerical simulations. Though the models are designed with relatively simple solutions in order to obtain a low computational cost of the simulations, they are able to reproduce with great accuracy the test results, thus validating the reliability of the numerical strategy proposed for the design of these structures. The developed models have shown to be readily applied to predict the barrier performance under different possible scenarios, by varying the initial configuration of the structures and/or of the impact conditions. Furthermore, the numerical models enable to optimize the design of these structures and to evaluate the benefit of possible solutions. Finally it is shown they can be also used as a valuable supporting tool for the operators within a rockfall risk assessment procedure, to gain crucial understanding of the performance of existing barriers in working conditions.
Resumo:
In this thesis, the author presents a query language for an RDF (Resource Description Framework) database and discusses its applications in the context of the HELM project (the Hypertextual Electronic Library of Mathematics). This language aims at meeting the main requirements coming from the RDF community. in particular it includes: a human readable textual syntax and a machine-processable XML (Extensible Markup Language) syntax both for queries and for query results, a rigorously exposed formal semantics, a graph-oriented RDF data access model capable of exploring an entire RDF graph (including both RDF Models and RDF Schemata), a full set of Boolean operators to compose the query constraints, fully customizable and highly structured query results having a 4-dimensional geometry, some constructions taken from ordinary programming languages that simplify the formulation of complex queries. The HELM project aims at integrating the modern tools for the automation of formal reasoning with the most recent electronic publishing technologies, in order create and maintain a hypertextual, distributed virtual library of formal mathematical knowledge. In the spirit of the Semantic Web, the documents of this library include RDF metadata describing their structure and content in a machine-understandable form. Using the author's query engine, HELM exploits this information to implement some functionalities allowing the interactive and automatic retrieval of documents on the basis of content-aware requests that take into account the mathematical nature of these documents.