1000 resultados para Plasma Propulsion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the growth of GaInNAs/GaAs quantum well (QW) by molecular beam epitaxy using a DC plasma as the N sourer. The N concentration was independent of the As pressure and the In concentration, but inversely proportional to the growth rate. It was almost independent of T, over the range of 400-500 degreesC, but dropped rapidly when T-g exceeded 500 degreesC. Thermally-activated N surface segregation is considered to account for the strong falloff of the N concentration. As increasing N concentration, the steep absorption edge of the photovoltage spectra of GaInNAs/GaAs QW became gentle, the full-width at half-maximum of the photoluminescence (PL) peal; increased rapidly, and a so-called S-shaped temperature dependence of PL peak energy showed up. All these were attributed to the increasing localized state as N concentration. Ion-induced damage was one of the origins of the localized state. A rapid thermal annealing procedure could effectively remote the localized state. (C) 2001 Elsevier Science D.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimum growth condition of GaInNAs/GaAs quantum wells (QWs) by plasma-assisted molecular beam epitaxy was investigated. High-resolution X-ray diffraction and photoluminescence (PL) measurements showed that ion damage drastically degraded the quality of GaNAs and GaInNAs QWs and that ion removal magnets can effectively remove the excess ion damage. Remarkable improvement of PL intensity and obvious appearance of pendellosung fringes were observed by removing the N ions produced in the plasma cell. When the growth rate increased from 0.73 to 1.2 ML/s, the optimum growth temperature was raised from 460 degreesC to 480 degreesC and PL peak intensity increased two times. Although the N composition decreased with increasing growth rate, degradation of optical properties of GaInNAs QWs was observed when the growth rate was over 0.92 ML/s. Due to low-temperature growth of GaInNAs QWs, a distinctive reflection high-energy electron diffraction pattern was observed only when the GaAs barrier was grown under lower As-4 pressure. The samples with GaAs barriers grown under lower As-4 pressure (V/III ratio about 24) exhibited seven times increase in PL peak intensity compared with those grown under higher As-4 pressure (V/III ratio about 50). (C) 2001 Elsevier Science B,V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma in the air is successfully induced by a free-oscillated Nd:YAG laser pulse with a peak power of 10(2-3) W. The initial free electrons for the cascade breakdown process are from the ablated particles from the surface of a heated coal target, likewise induced by the focused laser beam. The laser field compensates the energy loss of the plasma when the corresponding temperature and the images are investigated by fitting the experimental spectra of B-2 Sigma(+) -> X-2 Sigma(+) band of CN radicals in the plasma with the simulated spectra and a 4-frame CCD camera. The electron density is estimated using a simplified Kramer formula. As this interaction occurs in a gas mixture of hydrogen and oxygen, the formation and development of the plasma are weakened or restrained due to the chaining branch reaction in which the OH radicals are accumulated and the laser energy is consumed. Moreover, this laser ignition will initiate the combustion or explosion process of combustible gas and the minimum ignition energy is measured at different initial pressures. The differences in the experimental results compared to those induced by a nanosecond Q-switched laser pulse with a peak power of 10(6-8) W are also discussed. (C) 2009 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Propulsion characteristics of wing-in-ground effect propulsors were investigated using a comparative analysis of thrust and powering characteristics between wing-in-ground (WIG) effect thrusters and traditional screw propellers. WIG thrusters were found to have constant thrust production and efficiency, nearly independent of speed of advance, as contrary to screw propellers, whose optimum efficiency occurs at only one speed point. To produce the same amount of thrust as equivalent screw propellers, WIG thrusters have to work under heavily loaded operating conditions. WIG thrusters were also found to produce a relatively lower but nearly constant efficiency and thrust, independent of speed. Another distinguishing propulsion characteristic revealed for WIG thrusters is that they are capable of operating at much higher speeds, in a range of three to six times that of screw propellers of the same size. While the speed range of screw propellers is mainly limited by their geometric pitch, the speed range of WIG thrusters has no speed limit in ideal fluid. In reality, the speed range is only limited by viscous drag and cavitation, or compressibility, in water or air, respectively. This suggests a potential for WIG thrusters of higher speed application than screw propellers. An experimental investigation and validation of the propulsion system is warranted. Crown Copyright (C) 2010 Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using an oscilloscope, a high-speed video camera and a double-electrostatic probe system, the periodicity and amplitude of the fluctuations in arc voltage, jet luminance and ion saturation current of a plasma jet were monitored to investigate various sources of instabilities and their effects in a non-transferred dc plasma torch operated at reduced pressure. The results show that besides a 300 Hz main fluctuation inherited from the power supply, arc voltage fluctuation of 3–4 kHz with an amplitude less than 5% of the mean voltage was mainly affected by the total gas flow rate. The arc voltage fluctuation can affect the energy distribution of the plasma jet which is detectable by electrostatic probes and a high-speed video camera. The steadiness of energy transfer is also affected by the laminar or turbulent flow state of the plasma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arc root behavior affects the energy transfer and nozzle erosion in an arcjet thruster. To investigate the development of arc root attachment in 1 kW class N2 and H2-N2 arcjet thrusters from the time of ignition to the stably working condition, a kinetic series of end-on view images of the nozzle obtained by a high-speed video camera was analyzed. The addition of hydrogen leads to higher arc voltage levels and the determining factor for the mode of arc root attachment was found to be the nozzle temperature. At lower nozzle temperatures, constricted type attachment with unstable motions of the arc root was observed, while a fully diffused and stable arc root was observed at elevated nozzle temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modeling studies are preformed to investigate the plasma and heat transfer characteristics of a low power argon arcjet thruster. Computed temperature, velocity, static pressure, and Mach number distribution in arcjet thruster under typical operating condition are presented in this paper. It shows that the performance data from numerical modeling results are basically consistent with the experimental measured values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast plasma sintering deposition of SiC nano-structured coatings was achieved using a specially designed non-transferred dc plasma torch operated at reduced pressure. Employing the Taguchi method, the deposition parameters were optimized and verified. With the optimized combination of deposition parameters, homogeneous SiC coatings were deposited on relatively large area substrates of Φ50 mm and 50×50 mm with a deposition rate as high as 20 μm/min. Ablation test showed that such coatings can be used as oxidation resistance coatings in high temperature oxidizing environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Because of its high energy density direct current(dc)thermal plasmas are widely accepted as a processing medium which facilitates high processing rates high fluxes of radical species the potential for smaller jnstallations a wide choice of reactants and high quench rates[1].A broad range of industrial processing methods have been developed based on dc plasma technology. However,nonstationary features limited new applications of dc plasma in advanced processing, where reliability£¬reproducibility and precise controllability are required£. These challenges call for better understanding of the arc and jet behavior over a wide range of generating parameters and a comprehensive control of every aspect of lhe plasma processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the successful completion of the cooling storage ring (CSR) project in China at the end of 2007, high qualitative heavy ion beams with energy ranging from keV to GeV/u have been available at the Heavy Ion Research Facility at Lanzhou (HIRFL). More than 1091 GeV/u C6+particles or 108235 MeV/u Xe particles can be stored in the CSR main-ring and extracted within hundred nano-seconds during the test running,the beam parameters will be improved in the coming years so that high energy density (HED) conditions could be achieved and investigated there. Recent scientific results from the experiments relevant to plasma research on HIRFL are summarized. Dense plasma research with intense heavy ion beams of CSR is proposed here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate the hot electrons in highly charged electron cyclotron resonance (ECR) plasma, Bremsstrahlung radiations were measured on two ECR ion sources at the Institute of Modern Physics. Used as a comparative index of the mean energy of the hot electrons, a spectral temperature, Tspe, is derived through a linear fitting of the spectra in a semi-logarithmic representation. The influences of the external source parameters, especially the magnetic configuration, on the hot electrons are studied systematically. This study has experimentally demonstrated the importance of high microwave frequency and high magnetic field in the electron resonance heating to produce a high density of hot electrons, which is consistent with the empirical ECR scaling laws. The experimental results have again shown that a good compromise is needed between the ion extraction and the plasma confinement for an efficient production of highly charged ion beams. In addition, this investigation has shown that the correlation between the mean energy of the hot electrons and the magnetic field gradient at the ECR is well in agreement with the theoretical models.中文摘要:ECR(电子回旋共振)离子源是产生稳定的强流多电荷态离子束流最有效装置。全永磁 ECR 离子源因其独特的特点为很多中小型多电荷态离子束流实验平台与离子注入机等系统所采用,为后者产生重复性好、稳定性强的多电荷态离子束流。本文着重论述了中国科学院近代物理研究所研制的几台全永磁多电荷态ECR离子源及其特性与典型性能,如能产生强流高电荷态离子束流的高性能全永磁离子源LAPECR2,能产生强流中低电荷态离子束流的LAPECR1,能产生多电荷态重金属离子束流的LAPECR1-M等。这些性能稳定的离子源为提高近代物理研究所相关试验平台的性能提供了关键的束流品质保障。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the successful completion of the cooling storage ring (CSR) project in China at the end of 2007, high qualitative heavy ion beams with energy ranging from keV to GeV/u have been available at the Heavy Ion Research Facility at Lanzhou (HIRFL). More than 10(9) 1 GeVlu C6+ particles or 10(8) 235 MeV/u Xe particles can be stored in the CSR main-ring and extracted within hundred nano-seconds during the test running, the beam parameters will be improved in the coming years so that high energy density (HED) conditions could be achieved and investigated there. Recent scientific results from the experiments relevant to plasma research on HIRFL are summarized. Dense plasma research with intense heavy ion beams of CSR is proposed here.