951 resultados para Miniemulsion polymerization
Resumo:
A novel biodegradable diblock copolymer, poly(L-cysteine)-b-Poly(L-lactide) (PLC-b-PLLA), was synthesized by ring-opening polymerization (ROP) of N-carboxyanhydride of beta-benzyloxycarbonyl-L-Cysteine (ZLC-NCA) with amino-terminated Poly(L-lactide) (NH2-PLLA) as a macroinitiator in a convenient way. The diblock copolymer and its precursor were characterized by H-1 NMR, Fourier transform infrared (FT-IR), gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS) measurements. The length of each block polymer could be tailored by molecular design and the ratios of feeding monomers.
Resumo:
A series of novel pH- and temperature-responsive diblock copolymers composed of poly(N-isopropylacrylamide) (PNIPAM) and poly[(L-glutamic acid)-co-(gamma-benzyl L-glutamate)] [P(GA-co-BLG)] were prepared. The influence of hydrophobic benzyl groups on the phase transition of the copolymers was studied for the first time. With increasing BLG content in P(GA-co-BLG) block, the thermal phase transition of the diblock copolymer became sharper at a designated pH and the critical curve of phase diagram of the diblock copolymer shifted to a higher pH region.
Resumo:
This article deals with (1) synthesis of novel cyclic carbonate monomer (2-oxo [1,3]dioxan-5-yl)carbamic acid benzyl ester (CAB) containing protected amino groups; (2) ring-opening copolymerization of the cyclic monomer with L-lactide (LA) to provide novel degradable poly(ester-carbonate)s with functional groups; (3) removal of the protective benzyloxycarbonyl (Cbz) groups by catalytic hydrogenation to afford the corresponding poly(ester-co-carbonate)s with free amino groups; (4) grafting of oligopeptide Gly-Arg-Gly-Asp-Ser-Tyr (GRGDSY, abbreviated as RGD) onto the copolymer pendant amino groups in the presence of 1,1'-carbonyldiimidazole (CDI).
Resumo:
This paper describes a facile route for simultaneous synthesis of polyaniline (PANI) nanotubules and gold nanoplates. The inner diameter of PANI nanotubules was less than 10 nm and the length was several micrometers. At the same time, uniform single-crystal gold nanoplates with thicknesses of tens of nanometers were obtained.
Resumo:
Polyaniline/magnetite nanocomposites consisting of polyaniline (PANI) nanorods surrounded by magnetite nanoparticles were prepared via an in situ self-assembly process in the presence of PANI nanorods. The synthesis is based on the well-known chemical oxidative polymerization of aniline in an acidic environment, with ammonium persulfate (APS) as the oxidant. An organic acid (dodecylbenzenesulfonic acid, DBSA) was used to replace the conventional strong acidic (1 M HCl) environment. Here, dodecylbenzenesulfonic acid is used not only as dopant, but also as surfactant in our reaction system.
Resumo:
Amphiphilic biodegradable star-shaped polymer was conveniently prepared by the Sn(Oct)(2)-catalyzed ring opening polymerization of c-caprolactone (CL) with hyperbranched poly(ester amide) (PEA) as a macroinitiator. Various monomer/initiator ratios were employed to vary the length of the PCL arms. H-1 NMR and FTIR characterizations showed the successful synthesis of star polymer with high initiation efficiency. SEC analysis using triple detectors, RI, light scattering, and viscosity confirmed the controlled manner of polymerization and the star architecture.
Resumo:
Well-defined polyacrylonitrile with a higher number-average molecular weight (R.) up to 200,000 and a lower polydispersity index (PDI, 1.7-2.0) was firstly obtained via reversible addition-fragmentation chain transfer (RAFT) process. This was achieved by selecting a stable, easy way to prepare disulfide compound intermediates including bis(thiobenzoyl) disulfide (BTBDS) and bis(thiophenylacetoyl) disulfide (BTPADS) to react with azobis(isobutyronitrile) to directly synthesize RAFT agents in situ.
Resumo:
The strong polar group, sulfonic acid, has successfully been introduced into ethylene/allylbenzene copolymers without degradation or crosslinking via chlorosulfonation reaction with chlorosulfonic acid as a chlorosulforiating agent in 1, 1,2,2-tetrachloroethane followed by hydrolysis. The degree of sulforiation (DS) can be easily controlled by changing the ratio of chlorosulfonic acid to the pendant phenyls of the copolymer. The microstructure of sulfonated copolymers were unambiguously revealed by H-1 NMR and H-1-H-1 COSY spectral analyses, which indicates that all the sulforiation reactions exclusively took place at the para-position of the aromatic rings.
Resumo:
A convenient and cost-effective strategy for synthesis of hyperbranched poly(ester-amide)s from commercially available dicarboxylic acids (A(2)) and multihydroxyl secondary amine (CB2) has been developed. By optimizing the conditions of model reactions, the AB(2)-type intermediates were formed dominantly during the initial reaction stage. Without any purification, the AB(2) intermediate was subjected to thermal polycondensation in the absence of any catalyst to prepare the aliphatic and semiaromatic hyperbranched poly(ester-amide)s bearing multi-hydroxyl end-groups.
Resumo:
Branched polystyrenes with abundant pendant vinyl functional groups were prepared via radical polymerization of an asymmetric divinyl monomer, which possesses a higher reactive styryl and a lower reactive butenyl. Employing a fast reversible addition fragmentation chain transfer (RAFT) equilibrium, the concentration of active propagation chains remained at a low value and thus crosslinking did not occur until a high level of monomer conversion. The combination of a higher reaction temperature (120 degrees C) and RAFT agent cumyl dithiobenzoate was demonstrated to be optimal for providing both a more highly branched architecture and a higher polymer yield.
Resumo:
The assembly and disassembly of RecA-DNA nucleoprotein filaments on double-stranded DNA (dsDNA) or single-stranded DNA (ssDNA) are important steps for homologous recombination and DNA repair. The assembly and disassembly of the nucleoprotein filaments are sensitive to the reaction conditions. In this work, we investigated different morphologies of the formed nucleoprotein filaments at low temperature under different solution conditions by atomic force microscopy (AFM). We found that low temperature and long keeping time could induce the incomplete disassembly of the formed nucleoprotein filaments.
Resumo:
Liquid polybutadiene with desirable 1,2-units content was synthesized by Co(naph)(2)-Al-2(C2H5)(3)Cl-3-P(OPh)(3) catalyst system. It was shown that liquid polybutadiene having adequate 1,2-unit content (vinvl =35%-40%) molecular weight(M-n = 700-3500), and acceptabele conversion(>= 55%) can synthesized after optimizing polymerization conditions.
Resumo:
Deformation behavior of polyethylene/modified montmorillonites with polymerizable surfactant (PE/P-MMT) nanocomposite with strong interfacial interaction was studied by means of morphology observation and X-ray scattering measurements. The orientation of PE chains was accompanied by the orientation of well-dispersed MMT platelets due to the presence of strong interfacial interaction, and both of the orientations were parallel to the deformation direction. The high degree of orientation of MMT platelets and PE chains resulted from the synergistic movement of PE matrix and MMTs, which originated from the presence of a network-like structure.
Resumo:
Two kinds of ethylene copolymers with controllable structures were synthesized and the molecular parameters were characterized by FTIR, GPC, H-1 NMR and C-13 NMR systematically. Effects of molecular and the content of branched short chains on the crystalline properties of the resultant ethylene copolymers were investigated by DSC, respectively. First, polybutadienes with M-w ranging from 20000 to 110000, low polydispersity index(PDI = 1.1) and almost the same content of vinyl (molar fraction about 7%) were synthesized by anionic polymerization. After hydrogenation, the melting point and crystallinity of the obtained model ethylene/1-butene copolymers decreased with the increase in M-w of the copolymers.