955 resultados para Media reputation. Media framed image
Resumo:
The behaviors of six new cyclophane receptors for organic guest molecules in aqueous media are reported. These new hosts are modifications of more basic parent structures, and the main goal of their examination has been to determine how the modifications affect host selectivity for cationic guests. In particular, we have been interested in determining how additional non-covalent binding interactions can complement the cation-π interactions active in the parent systems. Three types of modifications were made to these systems. Firstly, neutral methoxy and bromine substituents were added to produce four of the six new macrocycles. Secondly, two additional aromatic rings (relative to the parent host) capable of making cation-π interactions with charged guest species were appended. Thirdly, a negatively charged carboxyl group was attached to produce a cavity in which electrostatic interactions should enhance cationic guest binding. ^1H-NMR and circular dichroic techniques were employed to determine the binding affinities of a wide variety of organic guests for the parent and modified structures in aqueous media.
Bromination of the parent host greatly enhances its binding in a general fashion, primarily as the result of hydrophobic interactions. The addition of methoxy groups does not enhance binding, apparently as a result of a collapse of the hosts into a conformation that is not suitable for binding. The appendage of extra aromatic rings enhances the binding of positively charged guests, most likely in response to more complete encapsulation of guest species. The addition of a negatively charged carboxylate enhances the binding to only selective groups of cationic guests. AM1 calculations of the electrostatic potentials of several guests molecules suggests that the enhancements seen with the modified receptor compared to the parent are most likely the result of close contact between regions of highest potential on the guest and the appended carboxylate.
Resumo:
Incoherent subharmonic light scattering in isotropic media is a new kind of nonlinear light scattering, which involves single input photon and multiple output photons of equal frequency. We investigate theoretically the dependence of the subharmonic scattering intensity on the hyperpolarizability of molecules and the incident intensity using nonlinear optics theory similar to that used for Hyper-Rayleigh scattering and degenerate optical parametric oscillators. It is derived that the subharmonic scattering intensities grow exponentially or superexponentially with the hyperpolarizability of molecules and the incident intensity. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
[EN] Some authors have suggested that body weight dissatisfaction may be high in students majoring in dietetics. Therefore, this study was conducted to examine the extent of body weight and image dissatisfaction in a sample of women in dietetics major. Additionally, predictors of magnitude of body weight dissatisfaction were analyzed. Participants were 62 volunteers with normalweight whose mean age was 21.87±1.89 years old (nonrandom sample). The assessment instruments included anthropometric measurements, a somatomorphic matrix test and an eating disorders inventory (EDI-2). Data were analyzed using SPSS vs. 15.0. A larger proportion of students chose an ideal body weight lower than actual weight (67.7%) and body image with less body fat and more muscle mass than actual values (56.4%). The magnitude of body weight dissatisfaction was associated with muscle mass and body fat dissatisfaction, and with the subscale of EDI-2 “body dissatisfaction”. So, from a public health standpoint, we consider important to continue working in this line of research with the aim of better understanding the extent of body weight dissatisfaction in women dietitians, and how this dissatisfaction could interfere with their professional practice.
Resumo:
We investigate an enhancement of the Kerr nonlinearity in phase-dependent double electromagnetically induced transparency (EIT) media. We find, by changing the relative phase of the driven fields, that the properties of EIT and the Kerr nonlinearity can be modified significantly. Choosing the relative phase appropriately, a giant Kerr nonlinearity can be achieved with vanishing absorptions.
Resumo:
We experimentally demonstrate that high-power femtosecond pulses can be compressed during the nonlinear propagation in the normally dispersive solid bulk medium. The self-compression behavior was detailedly investigated under a variety of experimental conditions, and the temporal and spectral characteristics of resulted pulses were found to be significantly affected by the input pulse intensity, with higher intensity corresponding to shorter compressed pulses. By passing through a piece of BK7 glass, a self-compression from 50 to 20 fs was achieved, with a compression factor of about 2.5. However, the output pulse was observed to be split into two peaks when the input intensity is high enough to generate supercontinuum and conical emission. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The nonlinear behavior of a probe pulse propagating in a medium with electromagnetically induced transparency is studied both numerically and analytically. A new type of nonlinear wave equation is proposed in which the noninstantaneous response of nonlinear polarization is treated properly. The resulting nonlinear behavior of the propagating probe pulse is shown to be fundamentally different from that predicted by the simple nonlinear Schrodinger-like wave equation that considers only instantaneous Kerr nonlinearity. (c) 2005 Optical Society of America.
Resumo:
This dissertation is concerned with the development of a new discrete element method (DEM) based on Non-Uniform Rational Basis Splines (NURBS). With NURBS, the new DEM is able to capture sphericity and angularity, the two particle morphological measures used in characterizing real grain geometries. By taking advantage of the parametric nature of NURBS, the Lipschitzian dividing rectangle (DIRECT) global optimization procedure is employed as a solution procedure to the closest-point projection problem, which enables the contact treatment of non-convex particles. A contact dynamics (CD) approach to the NURBS-based discrete method is also formulated. By combining particle shape flexibility, properties of implicit time-integration, and non-penetrating constraints, we target applications in which the classical DEM either performs poorly or simply fails, i.e., in granular systems composed of rigid or highly stiff angular particles and subjected to quasistatic or dynamic flow conditions. The CD implementation is made simple by adopting a variational framework, which enables the resulting discrete problem to be readily solved using off-the-shelf mathematical programming solvers. The capabilities of the NURBS-based DEM are demonstrated through 2D numerical examples that highlight the effects of particle morphology on the macroscopic response of granular assemblies under quasistatic and dynamic flow conditions, and a 3D characterization of material response in the shear band of a real triaxial specimen.
Resumo:
The purpose of this work is a contribution to the quantitative record of the use of iron by planktonic algae. Preliminary experiments with Chlorella to determine the rate of iron intake in the presence of inorganic sources of iron did not produce the desired result. The crucial point of this work is the investigation of the influence of various external factors on the stability of FeEDTA (FeEDTA = Ferric(III)-compound of ethylene-diamine tetra-acetic acid), since this compound appears to be particularly well-suited as a source of iron for planktonic algae (e.g. TAMIYA et al. 1953). Cultures of Chlorella fusca in a light thermostat were used in experimental research. Methods and results are discussed.
Resumo:
We study the behavior of granular materials at three length scales. At the smallest length scale, the grain-scale, we study inter-particle forces and "force chains". Inter-particle forces are the natural building blocks of constitutive laws for granular materials. Force chains are a key signature of the heterogeneity of granular systems. Despite their fundamental importance for calibrating grain-scale numerical models and elucidating constitutive laws, inter-particle forces have not been fully quantified in natural granular materials. We present a numerical force inference technique for determining inter-particle forces from experimental data and apply the technique to two-dimensional and three-dimensional systems under quasi-static and dynamic load. These experiments validate the technique and provide insight into the quasi-static and dynamic behavior of granular materials.
At a larger length scale, the mesoscale, we study the emergent frictional behavior of a collection of grains. Properties of granular materials at this intermediate scale are crucial inputs for macro-scale continuum models. We derive friction laws for granular materials at the mesoscale by applying averaging techniques to grain-scale quantities. These laws portray the nature of steady-state frictional strength as a competition between steady-state dilation and grain-scale dissipation rates. The laws also directly link the rate of dilation to the non-steady-state frictional strength.
At the macro-scale, we investigate continuum modeling techniques capable of simulating the distinct solid-like, liquid-like, and gas-like behaviors exhibited by granular materials in a single computational domain. We propose a Smoothed Particle Hydrodynamics (SPH) approach for granular materials with a viscoplastic constitutive law. The constitutive law uses a rate-dependent and dilation-dependent friction law. We provide a theoretical basis for a dilation-dependent friction law using similar analysis to that performed at the mesoscale. We provide several qualitative and quantitative validations of the technique and discuss ongoing work aiming to couple the granular flow with gas and fluid flows.
Resumo:
The pulsed neutron technique has been used to investigate the decay of thermal neutrons in two adjacent water-borated water finite media. Experiments were performed with a 6x6x6 inches cubic assembly divided in two halves by a thin membrane and filled with pure distilled water on one side and borated water on the other side.
The fundamental decay constant was measured versus the boric acid concentration in the poisoned medium. The experimental results showed good agreement with the predictions of the time dependent diffusion model. It was assumed that the addition of boric acid increases the absorption cross section of the poisoned medium without affecting its diffusion properties: In these conditions, space-energy separability and the concept of an “effective” buckling as derived from diffusion theory were introduced. Their validity was supported by the experimental results.
Measurements were performed with the absorption cross section of the poisoned medium increasing gradually up to 16 times its initial value. Extensive use of the IBM 7090-7094 Computing facility was made to analyze properly the decay data (Frantic Code). Attention was given to the count loss correction scheme and the handling of the statistics involved. Fitting of the experimental results into the analytical form predicted by the diffusion model led to
Ʃav = 4721 sec-1 (±150)
Do = 35972 cm2sec-1 (±800) for water at 21˚C
C (given) = 3420 cm4sec-1
These values, when compared with published data, show that the diffusion model is adequate in describing the experiment.
Resumo:
[ES]Este trabajo pretende analizar la influencia que tiene la longitud de corte elegida y el filtro empleado en la medida de la rugosidad. Se realizan medidas de rugosidad en tres probetas que han sido sometidas a diferentes procesos de fabricación (fresado, rectificado y electroerosión). Además, se utilizan tres instrumentos diferentes para la medición. Tras realizar las medidas, se comparan los resultados y se extraen las conclusiones
Resumo:
An exact solution to the monoenergetic Boltzmann equation is obtained for the case of a plane isotropic burst of neutrons introduced at the interface separating two adjacent, dissimilar, semi-infinite media. The method of solution used is to remove the time dependence by a Laplace transformation, solve the transformed equation by the normal mode expansion method, and then invert to recover the time dependence.
The general result is expressed as a sum of definite, multiple integrals, one of which contains the uncollided wave of neutrons originating at the source plane. It is possible to obtain a simplified form for the solution at the interface, and certain numerical calculations are made there.
The interface flux in two adjacent moderators is calculated and plotted as a function of time for several moderator materials. For each case it is found that the flux decay curve has an asymptotic slope given accurately by diffusion theory. Furthermore, the interface current is observed to change directions when the scattering and absorption cross sections of the two moderator materials are related in a certain manner. More specifically, the reflection process in two adjacent moderators appears to depend initially on the scattering properties and for long times on the absorption properties of the media.
This analysis contains both the single infinite and semi-infinite medium problems as special cases. The results in these two special cases provide a check on the accuracy of the general solution since they agree with solutions of these problems obtained by separate analyses.