926 resultados para Laplace inverse transform
Resumo:
Oceanic islands can be divided, according to their origin, in volcanic and tectonic. Volcanic islands are due to excess volcanism. Tectonic islands are mainly formed due to vertical tectonic motions of blocks of oceanic lithosphere along transverse ridges flanking transform faults at slow and ultraslow mid-ocean ridges. Vertical tectonic motions are due to a reorganization of the geometry of the transform plate boundary, with the transition from a transcurrent tectonics to a transtensive and/or transpressive tectonics, with the formation of the transverse ridges. Tectonic islands can be located also at the ridge–transform intersection: in this case the uplift is due by the movement of the long-lived detachment faults located along the flanks of the mid-ocean ridges. The "Vema" paleoisland (equatorial Atlantic) is at the summit of the southern transverse ridge of the Vema transform. It is now 450 m bsl and it is capped by a carbonate platform 500 m-thick, dated by 87Sr/86Sr at 10 Ma. Three tectonic paleoislands are on the summit of the transverse ridge flanking the Romanche megatrasform (equatorial Atlantic). They are now about 1,000 m bsl and they are formed by 300 m-thick carbonate platforms dated by 87Sr/86Sr, between 11 and 6 Ma. The tectonic paleoisland “Atlantis Bank" is located in the South-Western Indian Ridge, along the Atlantis II transform, and it is today 700 m bsl. The only modern example of oceanic tectonics island is the St. Paul Rocks (equatorial Atlantic), located along the St. Paul transform. This archipelago is the top of a peridotitic massif that it is now a left overstep undergoing transpression. Oceanic volcanic islands are characterized by rapid growth and subsequent thermal subsidence and drowning; in contrast, oceanic tectonic islands may have one or more stages of emersion related to vertical tectonic events along the large oceanic fracture zones.
Resumo:
I dati derivanti da spettroscopia NMR sono l'effetto di fenomeni descritti attraverso la trasformata di Laplace della sorgente che li ha prodotti. Ci si riferisce a un problema inverso con dati discreti ed in relazione ad essi nasce l'esigenza di realizzare metodi numerici per l'inversione della trasformata di Laplace con dati discreti che è notoriamente un problema mal posto e pertanto occorre ricorrere a metodi di regolarizzazione. In questo contesto si propone una variante ai modelli presenti il letteratura che fanno utilizzo della norma L2, introducendo la norma L1.
Resumo:
The Hilbert transform is an important tool in both pure and applied mathematics. It is largely used in the field of signal processing. Lately has been used in mathematical finance as the fast Hilbert transform method is an efficient and accurate algorithm for pricing discretely monitored barrier and Bermudan style options. The purpose of this report is to show the basic properties of the Hilbert transform and to check the domain of definition of this operator.
Resumo:
Das Hauptziel der Arbeit ist es, die Beziehung zwischen Fontaine Modulen und F-T-Kristall zu studieren. Im ersten Kapitel wird die Definition von Fontaine Modulen, die auf die inversen Cartier Transform setzt erinnern wir von Ogus und Vologodsky errichtet. Neben der Erinnerung an die urspruengliche Konstruktion des inversen Cartier Transform, eine direktere Konstruktion, die wir auch vorstellen von G.T. Lan, M. Sheng und K. Zuo. Darueber hinaus beweisen wir diernGleichwertigkeit der beiden Konstruktion.rnrnrnIm zweiten Kapitel werden wir uns daran erinnern, den Konstruktion von inversen Cartier Transform in der Log Einstellung von D. Schepler und verallgemeinern die Lan-Sheng-Zuo Konstruktion an dieser Einstellung. Darueber hinaus geben wir eine Definition von Log FontainernModulen. Im dritten Kapitel werden wir erinnern an die Definition von F-T-Kristall und beweisen das wichtigste Ergebnis dieser Arbeit: Sei $Y$ eine glatte $S_{nu}$-Schema, wobei $S_{nu}$ ist eine flache $W_{nu+1}(k)$-Schema, $nugeq1$, und $X/S_0$ seine Reduction modulo $p$ sein. Bei einem F-T-Kristall $(E,Phi,B)$ auf $Y$ der Breite von weniger als $p$ und let $(E_Y ,B_Y ,nabla_Y)$ die entsprechende gefilterte $O_Y$-modulen mit einer integrierbar Zusammenhang ausgestattet. Anschliesend wird die Reduktion dieses Objekt modulo $p$ definiert eine Fontaine Modulen auf $X/S_0$ im dem Sinnernder Ogus und Vologodsky.
Resumo:
Die vorliegende Arbeit behandelt Vorwärts- sowie Rückwärtstheorie transienter Wirbelstromprobleme. Transiente Anregungsströme induzieren elektromagnetische Felder, welche sogenannte Wirbelströme in leitfähigen Objekten erzeugen. Im Falle von sich langsam ändernden Feldern kann diese Wechselwirkung durch die Wirbelstromgleichung, einer Approximation an die Maxwell-Gleichungen, beschrieben werden. Diese ist eine lineare partielle Differentialgleichung mit nicht-glatten Koeffizientenfunktionen von gemischt parabolisch-elliptischem Typ. Das Vorwärtsproblem besteht darin, zu gegebener Anregung sowie den umgebungsbeschreibenden Koeffizientenfunktionen das elektrische Feld als distributionelle Lösung der Gleichung zu bestimmen. Umgekehrt können die Felder mit Messspulen gemessen werden. Das Ziel des Rückwärtsproblems ist es, aus diesen Messungen Informationen über leitfähige Objekte, also über die Koeffizientenfunktion, die diese beschreibt, zu gewinnen. In dieser Arbeit wird eine variationelle Lösungstheorie vorgestellt und die Wohlgestelltheit der Gleichung diskutiert. Darauf aufbauend wird das Verhalten der Lösung für verschwindende Leitfähigkeit studiert und die Linearisierbarkeit der Gleichung ohne leitfähiges Objekt in Richtung des Auftauchens eines leitfähigen Objektes gezeigt. Zur Regularisierung der Gleichung werden Modifikationen vorgeschlagen, welche ein voll parabolisches bzw. elliptisches Problem liefern. Diese werden verifiziert, indem die Konvergenz der Lösungen gezeigt wird. Zuletzt wird gezeigt, dass unter der Annahme von sonst homogenen Umgebungsparametern leitfähige Objekte eindeutig durch die Messungen lokalisiert werden können. Hierzu werden die Linear Sampling Methode sowie die Faktorisierungsmethode angewendet.
Resumo:
Nella tesi viene descritto il Network Diffusion Model, ovvero il modello di A. Ray, A. Kuceyeski, M. Weiner inerente i meccanismi di progressione della demenza senile. In tale modello si approssima l'encefalo sano con una rete cerebrale (ovvero un grafo pesato), si identifica un generale fattore di malattia e se ne analizza la propagazione che avviene secondo meccanismi analoghi a quelli di un'infezione da prioni. La progressione del fattore di malattia e le conseguenze macroscopiche di tale processo(tra cui principalmente l'atrofia corticale) vengono, poi, descritte mediante approccio matematico. I risultati teoretici vengono confrontati con quanto osservato sperimentalmente in pazienti affetti da demenza senile. Nella tesi, inoltre, si fornisce una panoramica sui recenti studi inerenti i processi neurodegenerativi e si costruisce il contesto matematico di riferimento del modello preso in esame. Si presenta una panoramica sui grafi finiti, si introduce l'operatore di Laplace sui grafi e si forniscono stime dall'alto e dal basso per gli autovalori. Al fine di costruire una cornice matematica completa si analizza la relazione tra caso discreto e continuo: viene descritto l'operatore di Laplace-Beltrami sulle varietà riemanniane compatte e vengono fornite stime dall'alto per gli autovalori dell'operatore di Laplace-Beltrami associato a tali varietà a partire dalle stime dall'alto per gli autovalori del laplaciano sui grafi finiti.
Resumo:
In the modern society, light is mostly powered by electricity which lead to a significant increase of the global energy consumption. In order to reduce it, different kinds of electric lamps have been developed over the years; it is now accepted that phosphorescence-based OLEDs offer many advantages over existing light technologies. Iridium complexes are considered excellent candidates for bright materials by virtue of the possibility to easily tune the wavelength of the emitted radiation, by appropriate modifications of the nature of the ligands. It is important to note that the synthesis of Ir(III) blue-emitting complexes is a very challenging goal, because of wide HOMO-LUMO gaps needed for produce a deep blue emission. During my thesis I planned the synthesis of two different series of new Ir(III) heteroleptic complexes, the C and the N series, using cyclometalating ligands containing an increasing number of nitrogens in inverse and regular position. I successfully performed in the synthesis of the required four ligands, i.e. 1-methyl-4-phenyl-1H-imidazole (2), 4-phenyl-1-methyl-1,2,3-triazole (3), 1-phenyl-1H-1,2,3-triazole (6) and 1-phenyl-1H-tetrazole (7), that differ in the number of nitrogens present in the heterocyclic ring and in the position of the phenyl ring. Therefore the cyclometalation of the obtained ligands to get the corresponding Ir(III)-complexes was attempted. I succeeded in the synthesis of two Ir(III)-complexes of the C series, and I carried out various attempts to set up the appropriate reaction conditions to get the remaining desired derivatives. The work is still in progress, and once all the desired complexes will be synthesized and characterized, a correlation between their structure and their emitting properties could be formulated analysing and comparing the photophysical data of the real compounds.
Eigene Erfahrungen mit der inversen Schulterarthroplastik. Welche inverse Prothese ist die richtige?
Resumo:
This letter presents a new recursive method for computing discrete polynomial transforms. The method is shown for forward and inverse transforms of the Hermite, binomial, and Laguerre transforms. The recursive flow diagrams require only 2 additions, 2( +1) memory units, and +1multipliers for the +1-point Hermite and binomial transforms. The recursive flow diagram for the +1-point Laguerre transform requires 2 additions, 2( +1) memory units, and 2( +1) multipliers. The transform computation time for all of these transforms is ( )