996 resultados para Internet addresses
Resumo:
This paper addresses a new way for handling distributed design know as the Macro concept. It is based round the assumption that future design teams will become more distributed in nature as industry exploits the Internet and other integrated communication and data exchange systems. The paper notes that this concept is part of an attack on the problems associated with the total process of Distribute Multi-Disciplinary design and Optimisation. The concepts rely on the creation of distributed self-building and self-organising teams made up from members who are globally distributed. The paper describes both the approach adopted and its implementation in a prototype software system operating over the Internet. In essence the work presented is describing a novel method for implementing a distributed design process which is far from complete but which is producing challenging ideas. © 2000 by Cranfield University.
Resumo:
Strategic innovation has been shown to provide significant value for organisations whilst at the same time challenging traditional ways of thinking and working. There is less known, however, as to how organisations collaborate in innovation networks to achieve strategic innovation. In this paper we explore how innovation networks are orchestrated in developing a strategic innovation initiative around the Internet of Things. We show how a hub actor brings together a diverse group of actors to initially create and subsequently orchestrate the strategic innovation network through the employ of three dialogical strategies, namely persuasive projection, reflective development, and definitional control. Further, we illuminate how different types of legitimacy are established through these various dialogical strategies in orchestrating strategic innovation networks.
Resumo:
实现灵活方便的企业业务集成一直是信息领域的核心问题,也是B2B电子商务应用的关键。为此将Web服务和传统的工作流技术相结合,设计并实现了支持复合Web服务运行和管理的框架WSFlow。给出了WSFlow的总体结构,描述了其中的关键技术,包括Web服务与工作流活动的动态配置和绑定技术,复合Web服务流程的动态修改以及复合Web服务的运行监控等技术。
Resumo:
准确的网络流量分类是众多网络研究工作的基础,也一直是网络测量领域的研究热点.近年来,利用机器学习方法处理流量分类问题成为了该领域一个新兴的研究方向.在目前研究中应用较多的是朴素贝叶斯(nave Bayes,NB)及其改进算法.这些方法具有实现简单、分类高效的特点.但该方法过分依赖于样本空间的分布,具有内在的不稳定性.因此,提出一种基于支持向量机(support vector machine,SVM)的流量分类方法.该方法利用非线性变换和结构风险最小化(structural risk minimization,SRM)原则将流量分类问题转化为二次寻优问题,具有良好的分类准确率和稳定性.在理论分析的基础上,通过在实际网络流集合上与朴素贝叶斯算法的对比实验,可以看出使用支持向量机方法处理流量分类问题,具有以下3个优势:1)网络流属性不必满足条件独立假设,无须进行属性过滤;2)能够在先验知识相对不足的情况下,仍保持较高的分类准确率;3)不依赖于样本空间的分布,具有较好的分类稳定性.
Resumo:
互联网传输过程中存在的随机时延,影响了操作者与遥操作机器人之间的实时交互,降低了系统稳定性和操作性能。论文提出一种新的方法,利用动态神经元群模型对操作者发送的控制指令序列进行分析,实现对操作者意图的推断。在随机时延条件下,遥操作机器人能够根据操作者意图和当前环境信息,通过局部自主控制完成期望任务动作。同时可以与主端操作者基于事件的控制指令进行切换,来保证系统的稳定性,提高整个控制系统的操作性能和效率。最后,通过互联网足球机器人平台进行实验,仿真结果验证了所提模型与方法的有效性和可行性。
Resumo:
针对Internet多机器人系统中存在的操作指令延迟、工作效率低、协作能力差等问题,提出了多机器人神经元群网络控制模型。在学习过程中,来自不同功能区域的多类型神经元连接形成动态神经元群集,来描述各机器人的运动行为与外部条件、内部状态之间复杂的映射关系,通过对内部权值连接的评价选择,以实现最佳的多机器人运动行为协调。以互联网足球机器人系统为实验平台,给出了学习算法描述。仿真结果表明,己方机器人成功实现了配合射门的任务要求,所提模型和方法提高了多机器人的协作能力,并满足系统稳定性和实时性要求。