880 resultados para Glucose 2-oxidase
Resumo:
ntroduction: The ProAct study has shown that a pump switch to the Accu-Chek® Combo system (Roche Diagnostics Deutschland GmbH, Mannheim, Germany) in type 1 diabetes patients results in stable glycemic control with significant improvements in glycated hemoglobin (HbA1c) in patients with unsatisfactory baseline HbA1c and shorter pump usage time. Patients and Methods: In this post hoc analysis of the ProAct database, we investigated the glycemic control and glycemic variability at baseline by determination of several established parameters and scores (HbA1c, hypoglycemia frequency, J-score, Hypoglycemia and Hyperglycemia Indexes, and Index of Glycemic Control) in participants with different daily bolus and blood glucose measurement frequencies (less than four day, four or five per day, and more than five per day, in both cases). The data were derived from up to 299 patients (172 females, 127 males; age [mean±SD], 39.4±15.2 years; pump treatment duration, 7.0±5.2 years). Results: Participants with frequent glucose readings had better glycemic control than those with few readings (more than five readings per day vs. less than four readings per day: HbA1c, 7.2±1.1% vs. 8.0±0.9%; mean daily blood glucose, 151±22 mg/dL vs. 176±30 mg/dL; percentage of readings per month >300 mg/dL, 10±4% vs. 14±5%; percentage of readings in target range [80-180 mg/dL], 59% vs. 48% [P<0.05 in all cases]) and had a lower glycemic variability (J-score, 49±13 vs. 71±25 [P<0.05]; Hyperglycemia Index, 0.9±0.5 vs. 1.9±1.2 [P<0.05]; Index of Glycemic Control, 1.9±0.8 vs. 3.1±1.6 [P<0.05]; Hypoglycemia Index, 0.9±0.8 vs. 1.2±1.3 [not significant]). Frequent self-monitoring of blood glucose was associated with a higher number of bolus applications (6.1±2.2 boluses/day vs. 4.5±2.0 boluses/day [P<0.05]). Therefore, a similar but less pronounced effect on glycemic variability in favor of more daily bolus applications was observed (more than five vs. less than four bolues per day: J-score, 57±17 vs. 63±25 [not significant]; Hypoglycemia Index, 1.0±1.0 vs. 1.5±1.4 [P<0.05]; Hyperglycemia Index, 1.3±0.6 vs. 1.6±1.1 [not significant]; Index of Glycemic Control, 2.3±1.1 vs. 3.1±1.7 [P<0.05]). Conclusions: Pump users who perform frequent daily glucose readings have a better glycemic control with lower glycemic variability.
Resumo:
The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells.
Resumo:
In this study, we tested whether a standardized epigallocatechin-3-gallate (EGCG) rich green tea extract (comprising > 90% EGCG) affects fitness and lifespan as well as parameters of glucose metabolism and energy homeostasis in the fruit fly, Drosophila melanogaster. Following the application of the green tea extract a significant increase in the mean lifespan (+ 3.3 days) and the 50% survival (+ 4.3 days) as well as improved fitness was detected. These effects went along an increased expression of Spargel, the homolog of mammalian PGC1α, which has been reported to affect lifespan in flies. Intriguingly, in flies, treatment with the green tea extract decreased glucose concentrations, which were accompanied by an inhibition of α-amylase and α-glucosidase activity. Computational docking analysis proved the potential of EGCG to dock into the substrate binding pocket of α-amylase and to a greater extent into α-glucosidase. Furthermore, we demonstrate that EGCG downregulates insulin-like peptide 5 and phosphoenolpyruvate carboxykinase, major regulators of glucose metabolism, as well as the Drosophila homolog of leptin, unpaired 2. We propose that a decrease in glucose metabolism in connection with an upregulated expression of Spargel contribute to the better fitness and the extended lifespan in EGCG-treated flies.
Resumo:
Purpose To investigate the effect of topical glucose on visual parameters in individuals with primary open-angle glaucoma (POAG). Design Double-blind, randomized, crossover study. Participants Nondiabetic pseudophakic patients with definite POAG were recruited; 29 eyes of 16 individuals participated in study 1. A follow-up study (study 2) included 14 eyes of 7 individuals. Intervention Eyes were randomly allocated to receive 50% glucose or saline eye drops every 5 minutes for 60 minutes. Main Outcome Measures The contrast sensitivity and best-corrected logarithm of the minimum angle of resolution (logMAR). Results The 50% glucose reached the vitreous in pseudophakic but not phakic individuals. Glucose significantly improved the mean contrast sensitivity at 12 cycles/degree compared with 0.9% saline by 0.26 log units (95% confidence interval [CI], 0.13–0.38; P < 0.001) and 0.40 log units (95% CI, 0.17–0.60; P < 0.001) in the follow-up study. The intraocular pressure, refraction, and central corneal thickness were not affected by glucose; age was not a significant predictor of the response. Conclusions Topical glucose temporarily improves psychophysical visual parameters in some individuals with POAG, suggesting that neuronal energy substrate delivery to the vitreous reservoir may recover function of “sick” retinal neurons.
Resumo:
Correction of human myeloid cell function is crucial for the prevention of inflammatory and allergic reactions as well as leukaemia progression. Caffeine, a naturally occurring food component, is known to display anti-inflammatory effects which have previously been ascribed largely to its inhibitory actions on phosphodiesterase. However, more recent studies suggest an additional role in affecting the activity of the mammalian target of rapamycin (mTOR), a master regulator of myeloid cell translational pathways, although detailed molecular events underlying its mode of action have not been elucidated. Here, we report the cellular uptake of caffeine, without metabolisation, by healthy and malignant hematopoietic myeloid cells including monocytes, basophils and primary acute myeloid leukaemia mononuclear blasts. Unmodified caffeine downregulated mTOR signalling, which affected glycolysis and the release of pro-inflammatory/pro-angiogenic cytokines as well as other inflammatory mediators. In monocytes, the effects of caffeine were potentiated by its ability to inhibit xanthine oxidase, an enzyme which plays a central role in human purine catabolism by generating uric acid. In basophils, caffeine also increased intracellular cyclic adenosine monophosphate (cAMP) levels which further enhanced its inhibitory action on mTOR. These results demonstrate an important mode of pharmacological action of caffeine with potentially wide-ranging therapeutic impact for treating non-infectious disorders of the human immune system, where it could be applied directly to inflammatory cells.
Resumo:
As a member of the p53 gene family, p73 regulates cell cycle arrest, apoptosis, neurogenesis, immunity and inflammation. Recently, p73 has been shown to transcriptionally regulate selective metabolic enzymes, such as cytochrome c oxidase subunit IV isoform 1, glucose 6-phosphate dehydrogenase and glutaminase-2, resulting in significant effects on metabolism, including hepatocellular lipid metabolism, glutathione homeostasis and the pentose phosphate pathway. In order to further investigate the metabolic effect of p73, here, we compared the global metabolic profile of livers from p73 knockout and wild-type mice under both control and starvation conditions. Our results show that the depletion of all p73 isoforms cause altered lysine metabolism and glycolysis, distinct patterns for glutathione synthesis and Krebs cycle, as well as an elevated pentose phosphate pathway and abnormal lipid accumulation. These results indicate that p73 regulates basal and starvation-induced fuel metabolism in the liver, a finding that is likely to be highly relevant for metabolism-associated disorders, such as diabetes and cancer.
Resumo:
AIM Depending on intensity, exercise may induce a strong hormonal and metabolic response, including acid-base imbalances and changes in microcirculation, potentially interfering with the accuracy of continuous glucose monitoring (CGM). The present study aimed at comparing the accuracy of the Dexcom G4 Platinum (DG4P) CGM during continuous moderate and intermittent high-intensity exercise (IHE) in adults with type 1 diabetes (T1DM). METHODS Ten male individuals with well-controlled T1DM (HbA1c 7.0±0.6% [54±6mmol/mol]) inserted the DG4P sensor 2 days prior to a 90min cycling session (50% VO2peak) either with (IHE) or without (CONT) a 10s all-out sprint every 10min. Venous blood samples for reference glucose measurement were drawn every 10min and euglycemia (target 7mmol/l) was maintained using an oral glucose solution. Additionally, lactate and venous blood gas variables were determined. RESULTS Mean reference blood glucose was 7.6±0.2mmol/l during IHE and 6.7±0.2mmol/l during CONT (p<0.001). IHE resulted in significantly higher levels of lactate (7.3±0.5mmol/l vs. 2.6±0.3mmol/l, p<0.001), while pH values were significantly lower in the IHE group (7.27 vs. 7.38, p=0.001). Mean absolute relative difference (MARD) was 13.3±2.2% for IHE and 13.6±2.8% for CONT suggesting comparable accuracy (p=0.90). Using Clarke Error Grid Analysis, 100% of CGM values during both IHE and CONT were in zones A and B (IHE: 77% and 23%; CONT: 78% and 22%). CONCLUSIONS The present study revealed good and comparable accuracy of the DG4P CGM system during intermittent high intensity and continuous moderate intensity exercise, despite marked differences in metabolic conditions. This corroborates the clinical robustness of CGM under differing exercise conditions. CLINICAL TRIAL REGISTRATION NUMBER ClinicalTrials.gov NCT02068638.
Resumo:
PRINCIPLES We aimed to evaluate the efficacy of, and treatment satisfaction with, insulin glargine administered with SoloSTAR® or ClikSTAR® pens in patients with type 2 diabetes mellitus managed by primary care physicians in Switzerland. METHODS A total of 327 patients with inadequately controlled type 2 diabetes were enrolled by 72 physicians in this prospective observational study, which aimed to evaluate the efficacy of a 6-month course of insulin glargine therapy measured as development of glycaemic control (glycosylated haemoglobin [HbA1c] and fasting plasma glucose [FPG]) and weight change. We also assessed preference for reusable or disposable pens, and treatment satisfaction. RESULTS After 6 months, the mean daily dose of insulin glargine was 27.7±14.3 U, and dose titration was completed in 228 (72.4%) patients. Mean HbA1c decreased from 8.9%±1.6% (n=327) to 7.3%±1.0% (n=315) (p<0.0001), and 138 (43.8%) patients achieved an HbA1c≤7.0%. Mean FPG decreased from 10.9±4.5 to 7.3±1.8 mmol/l (p<0.0001). Mean body weight did not change (85.4±17.2 kg vs 85.0±16.5 kg; p=0.11). Patients' preference was in favour of the disposable SoloStar® pen (80%), as compared with the reusable ClickStar® pen (20%). Overall, 92.6% of physicians and 96.3% of patients were satisfied or very satisfied with the insulin glargine therapy. CONCLUSIONS In patients with type 2 diabetes insulin glargine administered by SoloSTAR® or ClikSTAR® pens, education on insulin injection and on self-management of diabetes was associated with clinically meaningful improvements in HbA1c and FPG without a mean collective weight gain. The vast majority of both patients and primary care physicians were satisfied with the treatment intensification.
Resumo:
Background. Diabetes places a significant burden on the health care system. Reduction in blood glucose levels (HbA1c) reduces the risk of complications; however, little is known about the impact of disease management programs on medical costs for patients with diabetes. In 2001, economic costs associated with diabetes totaled $100 billion, and indirect costs totaled $54 billion. ^ Objective. To compare outcomes of nurse case management by treatment algorithms with conventional primary care for glycemic control and cardiovascular risk factors in type 2 diabetic patients in a low-income Mexican American community-based setting, and to compare the cost effectiveness of the two programs. Patient compliance was also assessed. ^ Research design and methods. An observational group-comparison to evaluate a treatment intervention for type 2 diabetes management was implemented at three out-patient health facilities in San Antonio, Texas. All eligible type 2 diabetic patients attending the clinics during 1994–1996 became part of the study. Data were obtained from the study database, medical records, hospital accounting, and pharmacy cost lists, and entered into a computerized database. Three groups were compared: a Community Clinic Nurse Case Manager (CC-TA) following treatment algorithms, a University Clinic Nurse Case Manager (UC-TA) following treatment algorithms, and Primary Care Physicians (PCP) following conventional care practices at a Family Practice Clinic. The algorithms provided a disease management model specifically for hyperglycemia, dyslipidemia, hypertension, and microalbuminuria that progressively moved the patient toward ideal goals through adjustments in medication, self-monitoring of blood glucose, meal planning, and reinforcement of diet and exercise. Cost effectiveness of hemoglobin AI, final endpoints was compared. ^ Results. There were 358 patients analyzed: 106 patients in CC-TA, 170 patients in UC-TA, and 82 patients in PCP groups. Change in hemoglobin A1c (HbA1c) was the primary outcome measured. HbA1c results were presented at baseline, 6 and 12 months for CC-TA (10.4%, 7.1%, 7.3%), UC-TA (10.5%, 7.1%, 7.2%), and PCP (10.0%, 8.5%, 8.7%). Mean patient compliance was 81%. Levels of cost effectiveness were significantly different between clinics. ^ Conclusion. Nurse case management with treatment algorithms significantly improved glycemic control in patients with type 2 diabetes, and was more cost effective. ^
Resumo:
Background. According to the WHO 2007 country report, Haiti lags behind the Millennium Development Goal of reducing child mortality and maintains the highest under-5 mortality rate in the Western hemisphere. 3 Overall, few studies exist that seek to better grasp barriers in caring for a seriously ill child in a resource-limited setting and only a handful propose sustainable, effective interventions. ^ Objectives. The objectives of this study are to describe the prevalence of serious illnesses among children hospitalized at 2 children's hospitals in Port au Prince, to determine the barriers faced when caring for seriously ill children, and to report hospital outcomes of children admitted with serious illnesses. ^ Methods. Data were gathered from 2 major children's hospitals in Port au Prince, Haiti (Grace Children's Hospital [GCH] and Hopital d l'Universite d'Etat d'Haiti [HUEH]) using a triangulated approach of focus group discussions, physician questionnaires, and retrospective chart review. 23 pediatric physicians participated in focus group discussions and completed a self-administered questionnaire evaluating healthcare provider knowledge, self-efficacy, and perceived barriers relating to the care of seriously ill children in a resource-limited setting. A sample of 240 patient charts meeting eligibility criteria was abstracted for pertinent elements including sociodemographics, documentation, treatment strategies, and outcomes. Factors associated with mortality were analyzed using χ2 test and Fisher exact test [Minitab v.15]. ^ Results. The most common primary diagnoses at admission were gastroenteritis with moderate dehydration (35.5%), severe malnutrition (25.8%), and pneumonia (19.3%) for GCH, and severe malnutrition (32.6%), sepsis (24.7%), and severe respiratory distress (18%) for HUEH. Overall, 12.9% and 27% of seriously ill patients presented with shock to GCH and HUEH, respectively. ^ Shortage of necessary materials and equipment represented the most commonly reported limitation (18/23 respondents). According to chart data, 9.4% of children presenting with shock did not receive a fluid bolus, and only 8% of patients presenting with altered mental status or seizures received a glucose check. 65% of patients with meningitis did not receive a lumbar puncture due to lack of materials. ^ Hospital mortality rates did not differ by gender or by institution. Children who died were more likely to have a history of prematurity (OR 4.97 [95% CI 1.32-18.80]), an incomplete vaccination record (OR 4.05 [95% CI 1.68-9.74]), or a weight for age ≤3rd percentile (OR 6.1 [95% CI 2.49-14.93]. Case-fatality rates were significantly higher among those who presented with signs of shock compared with those who did not (23.1% vs. 10.7%, RR=2.16, p=0.03). Caregivers did not achieve shock reversal in 21% of patients and did not document shock reversal in 50% of patients. ^ Conclusions. Many challenges face those who seek to optimize care for seriously ill children in resource-limited settings. Specifically, in Haiti, qualitative and quantitative data suggest major issues with lack of supplies, pre-hospital factors, including malnutrition as a comorbidity, and early recognition and management of shock. A tailored intervention designed to address these issues is needed in order to prospectively evaluate improvements in child mortality in a high-risk population.^
ASSESSMENT OF SKELETAL MUSCLE BLOOD FLOW AND GLUCOSE METABOLISM WITH POSITRON EMITTING RADIONUCLIDES
Resumo:
In order to evaluate factors regulating substrate metabolism in vivo positron emitting radionuclides were used for the assessment of skeletal muscle blood flow and glucose utilization. The potassium analog, Rb-82 was used to measure skeletal muscle blood flow and the glucose analog, 18-F-2-deoxy-2-fluoro-D-glucose (FDG) was used to examine the kinetics of skeletal muscle transport and phosphorylation.^ New Zealand white rabbits' blood flow ranged from 1.0-70 ml/min/100g with the lowest flows occurring under baseline conditions and the highest flows were measured immediately after exercise. Elevated plasma glucose had no effect on increasing blood flow, whereas high physiologic to pharmacologic levels of insulin doubled flow as measured by the radiolabeled microspheres, but a proportionate increase was not detected by Rb-82. The data suggest that skeletal muscle blood flow can be measured using the positron emitting K+ analog Rb-82 under low flow and high flow conditions but not when insulin levels in the plasma are elevated. This may be due to the fact that insulin induces an increase in the Na+/K+-ATPase activity of the cell indirectly through a direct increase in the Na+/H+pump activity. This suggests that the increased cation pump activity counteracts the normal decrease in extraction seen at higher flows resulting in an underestimation of flow as measured by rubidium-82.^ Glucose uptake as measured by FDG employed a three compartment mathematical model describing the rates of transport, countertransport and phosphorylation of hexose. The absolute values for the metabolic rate of FDG were found to be an order of magnitude higher than those reported by other investigators. Changes noted in the rate constant for transport (k1) were found to disagree with the a priori information on the effects of insulin on skeletal muscle hexose transport. Glucose metabolism was however, found to increase above control levels with administration of insulin and electrical stimulation. The data indicate that valid measurements of skeletal muscle glucose transport and phosphorylation using the positron emitting glucose analog FDG requires further model application and biochemical validation. (Abstract shortened with permission of author.) ^
Resumo:
Arsenic trioxide (ATO) is an inorganic arsenic derivative that is very effective against relapsed acute promyelocytic leukemia. It is being investigated as therapy for other cancers, but the risk/benefit ratio is questionable due to significant side effects. In contrast, organic arsenic derivatives (OAD) are known to be much less toxic than ATO. Based on high activity, we selected GMZ27 (dipropil-s-glycerol arsenic) for further study and have confirmed its potent activity against human acute leukemia cell lines. This anti-leukemic activity is significantly higher than that of ATO. Both in vivo and in vitro tests have shown that GMZ27 is significantly less toxic to normal bone marrow mononuclear cells and normal mice. Therefore, further study of the biological activity of GMZ27 was undertaken. ^ GMZ27, in contrast to ATO, can only marginally induce maturation of leukemic cells. GMZ27 has no effect on cell cycle. The anti-leukemic activity of GMZ27 against acute myeolocytic leukemia cells is not dependent upon degradation of PML-RARα fusion protein. GMZ27 causes dissipation of mitochondrial transmembrane potential, cleavage of caspase 9, caspase 3 activation. Further studies indicated that GMZ27 induces intracellular reactive oxygen species (ROS) production, and modification of intracellular ROS levels had profound effect on its potential to inhibit proliferation of leukemic cells. Therefore ROS production plays a major role in the anti-leukemic activity of GMZ27. ^ To identify how GMZ27 induces ROS, our studies focused on mitochondria and NADPH oxidase. The results indicated that the source of ROS generation induced by GMZ27 is dose dependent. At the low dose (0.3 uM) GMZ27 induces NADPH oxidase activity that leads to late ROS production, while at the high dose (2.0 uM) mitochondria function is disrupted and early ROS production is induced leading to dramatic cell apoptosis. Therefore, late, ROS production can be detected in mitochondria are depleted Rho-0 cells. Our work not only delineates a major biologic pathway for the anti-leukemic activity of GMZ27, but also discusses possible ways of enhancing the effect by the co-application of NADPH oxidase activator. Further study of this interaction may lead to achieving better therapeutic index.^
Resumo:
Diabetes mellitus occurs in two forms, insulin-dependent (IDDM, formerly called juvenile type) and non-insulin dependent (NIDDM, formerly called adult type). Prevalence figures from around the world for NIDDM, show that all societies and all races are affected; although uncommon in some populations (.4%), it is common (10%) or very common (40%) in others (Tables 1 and 2).^ In Mexican-Americans in particular, the prevalence rates (7-10%) are intermediate to those in Caucasians (1-2%) and Amerindians (35%). Information about the distribution of the disease and identification of high risk groups for developing glucose intolerance or its vascular manifestations by the study of genetic markers will help to clarify and solve some of the problems from the public health and the genetic point of view.^ This research was designed to examine two general areas in relation to NIDDM. The first aims to determine the prevalence of polymorphic genetic markers in two groups distinguished by the presence or absence of diabetes and to observe if there are any genetic marker-disease association (univariate analysis using two by two tables and logistic regression to study the individual and joint effects of the different variables). The second deals with the effect of genetic differences on the variation in fasting plasma glucose and percent glycosylated hemoglobin (HbAl) (analysis of Covariance for each marker, using age and sex as covariates).^ The results from the first analysis were not statistically significant at the corrected p value of 0.003 given the number of tests that were performed. From the analysis of covariance of all the markers studied, only Duffy and Phosphoglucomutase were statistically significant but poor predictors, given that the amount they explain in terms of variation in glycosylated hemoglobin is very small.^ Trying to determine the polygenic component of chronic disease is not an easy task. This study confirms the fact that a larger and random or representative sample is needed to be able to detect differences in the prevalence of a marker for association studies and in the genetic contribution to the variation in glucose and glycosylated hemoglobin. The importance that ethnic homogeneity in the groups studied and standardization in the methodology will have on the results has been stressed. ^
Resumo:
Telemedicine is the use of telecommunications to support health care services and it incorporates a wide range of technology and devices. This systematic review seeks to determine which types of telemedicine technologies have been the most effective at improving the major health factors of subjects with type 2 diabetes. The major health factors identified were blood glucose, systolic and diastolic blood pressure, LDL cholesterol, weight, BMI, triglyceride levels, and waist circumference. A literature search was performed using peer reviewed, scholarly articles focused on the health outcomes of type 2 diabetes patients served by various telemedicine interventions. A total of 15 articles met the search criteria and were then analyzed to determine the significant health outcomes of each telemedicine interventions for type 2 diabetes patients. Results showed that telemedicine interventions using videoconferencing technology resulted in significant improvements in five health factor outcomes (total body weight, BMI, blood glucose, LDL cholesterol, and blood pressure), while telemedicine interventions using web applications and health monitors/modems only produced significant improvements in blood glucose. Future research should focus on examining the costs and benefits of videoconferencing and other telemedicine technologies for type 2 diabetes patients.^
Resumo:
This study analyzed the relationship between fasting blood glucose (FBG) and 8-year mortality in the Hypertension Detection Follow-up Program (HDFP) population. Fasting blood glucose (FBG) was examined both as a continuous variable and by specified FBG strata: Normal (FBG 60–100 mg/dL), Impaired (FBG ≥100 and ≤125 mg/dL), and Diabetic (FBG>125 mg/dL or pre-existing diabetes) subgroups. The relationship between type 2 diabetes was examined with all-cause mortality. This thesis described and compared the characteristics of fasting blood glucose strata by recognized glucose cut-points; described the mortality rates in the various fasting blood glucose strata using Kaplan-Meier mortality curves, and compared the mortality risk of various strata using Cox Regression analysis. Overall, mortality was significantly greater among Referred Care (RC) participants compared to Stepped Care (SC) {HR = 1.17; 95% CI (1.052,1.309); p-value = 0.004}, as reported by the HDFP investigators in 1979. Compared with SC participants, the RC mortality rate was significantly higher for the Normal FBG group {HR = 1.18; 95% CI (1.029,1.363); p-value = 0.019} and the Impaired FBG group, {HR = 1.34; 95% CI (1.036,1.734); p-value = 0.026,}. However, for the diabetic group, 8-year mortality did not differ significantly between the RC and SC groups after adjusting for race, gender, age, smoking status among Diabetic individuals {HR = 1.03; 95% CI (0.816,1.303); p-value = 0.798}. This latter finding is possibly due to a lack of a treatment difference of hypertension among Diabetic participants in both RC and SC groups. The largest difference in mortality between RC and SC was in the Impaired subgroup, suggesting that hypertensive patients with FBG between 100 and 125 mg/dL would benefit from aggressive antihypertensive therapy.^