885 resultados para Freeze drying
Resumo:
An important application of solar thermal storage is for power generation or process heating. Low-temperature thermal storage in a packed rock bed is considered the best option for thermal storage for solar drying applications. In this chapter, mathematical formulations for conical have been developed. The model equations are solved numerically for charging/discharging cycles utilizing MATLAB. Results were compared with rock-bed storage with standard straight tank. From the simulated results, the temperature distribution was found to be more uniform in the truncated conical rock-bed storage. Also, the pressure drop over a long period of time in the conical thermal storage was as low as 25 Pa. Hence, the amount of power required from a centrifugal fan would be significantly lower. The flow of air inside the tank is simulated in SolidWorks software. From flow simulation, 3D modelling of flow is obtained to capture the actual scenario inside the tank.
Resumo:
An important application of thermal storage is solar energy for power generation or process heating. Low temperature thermal storage in a packed rock bed is considered best option for thermal storage for solar drying applications. In this paper, mathematical formulations for conical and cylindrical rock bed storage tanks have been developed. The model equations are solved numerically for charging/discharging cycles. From the simulated results, it was observed that for the same aspect ratio between the diameter and the length of the thermal storages, the conical thermal storage had better performance. The temperature distribution was found to be more uniform in the truncated conical shape rock bed storage. Also, the pressure drop over long period of time in the conical thermal storage was lower than that of the cylindrical thermal storage. Hence, the amount of power required from a centrifugal fan was lower.
Resumo:
The present study examines the shrinkage behaviour of residually derived black cotton (BC) soil and red soil compacted specimens that were subjected to air-drying from the swollen state. The soil specimens were compacted at varying dry density and moisture contents to simulate varied field conditions. The void ratio and moisture content of the swollen specimens were monitored during the drying process and relationship between them is analyzed. Shrinkage is represented as reduction in void ratio with decrease in water content of soil specimens. It is found to occur in three distinct stages. Total shrinkage magnitude depends on the type of clay mineral present. Variation in compaction conditions effect marginally total shrinkage magnitudes of BC soil specimens but have relatively more effect on red soil specimens. A linear relation is obtained between total shrinkage magnitude and volumetric water content of soil specimens in swollen state and can be used to predict the shrinkage magnitude of soils.
Resumo:
Hollow Microspheres of hydroxyapatite-polymer composite can be used as carriers in drug delivery and fillers in tissue engineering. Based on the concept of soft chemistry, a battery of technique is available in the literature to synthesize hollow microspheres, however, an economically viable synthesis route, having good control over the microarchitect and easy to be scaled up, is yet to be developed. Polymer matrix mediated synthesis of inorganic nanoparticles is known to synthesize nanoparticles with controlled morphology and dimensions. It is termed as biomimetic synthesis. Integrating the biomimetic synthesis of nano-particles and spray drying techniques, a novel process of producing hydroxyapatite-polymer composite hollow microspheres is briefly discussed here.
Resumo:
The Antarctic system comprises of the continent itself, Antarctica, and the ocean surrounding it, the Southern Ocean. The system has an important part in the global climate due to its size, its high latitude location and the negative radiation balance of its large ice sheets. Antarctica has also been in focus for several decades due to increased ultraviolet (UV) levels caused by stratospheric ozone depletion, and the disintegration of its ice shelves. In this study, measurements were made during three Austral summers to study the optical properties of the Antarctic system and to produce radiation information for additional modeling studies. These are related to specific phenomena found in the system. During the summer of 1997-1998, measurements of beam absorption and beam attenuation coefficients, and downwelling and upwelling irradiance were made in the Southern Ocean along a S-N transect at 6°E. The attenuation of photosynthetically active radiation (PAR) was calculated and used together with hydrographic measurements to judge whether the phytoplankton in the investigated areas of the Southern Ocean are light limited. By using the Kirk formula the diffuse attenuation coefficient was linked to the absorption and scattering coefficients. The diffuse attenuation coefficients (Kpar) for PAR were found to vary between 0.03 and 0.09 1/m. Using the values for KPAR and the definition of the Sverdrup critical depth, the studied Southern Ocean plankton systems were found not to be light limited. Variabilities in the spectral and total albedo of snow were studied in the Queen Maud Land region of Antarctica during the summers of 1999-2000 and 2000-2001. The measurement areas were the vicinity of the South African Antarctic research station SANAE 4, and a traverse near the Finnish Antarctic research station Aboa. The midday mean total albedos for snow were between 0.83, for clear skies, and 0.86, for overcast skies, at Aboa and between 0.81 and 0.83 for SANAE 4. The mean spectral albedo levels at Aboa and SANAE 4 were very close to each other. The variations in the spectral albedos were due more to differences in ambient conditions than variations in snow properties. A Monte-Carlo model was developed to study the spectral albedo and to develop a novel nondestructive method to measure the diffuse attenuation coefficient of snow. The method was based on the decay of upwelling radiation moving horizontally away from a source of downwelling light. This was assumed to have a relation to the diffuse attenuation coefficient. In the model, the attenuation coefficient obtained from the upwelling irradiance was higher than that obtained using vertical profiles of downwelling irradiance. The model results were compared to field measurements made on dry snow in Finnish Lapland and they correlated reasonably well. Low-elevation (below 1000 m) blue-ice areas may experience substantial melt-freeze cycles due to absorbed solar radiation and the small heat conductivity in the ice. A two-dimensional (x-z) model has been developed to simulate the formation and water circulation in the subsurface ponds. The model results show that for a physically reasonable parameter set the formation of liquid water within the ice can be reproduced. The results however are sensitive to the chosen parameter values, and their exact values are not well known. Vertical convection and a weak overturning circulation is generated stratifying the fluid and transporting warmer water downward, thereby causing additional melting at the base of the pond. In a 50-year integration, a global warming scenario mimicked by a decadal scale increase of 3 degrees per 100 years in air temperature, leads to a general increase in subsurface water volume. The ice did not disintegrate due to the air temperature increase after the 50 year integration.
Resumo:
The study analyses European social policy as a political project that proceeds under the guidance of the European Commission. In the name of modernisation, the project aims to build a new idea for the welfare state. To understand the project, it is necessary to distance oneself from both the juridical competence of the European Union and the traditional national welfare state models. The question is about sharing problems, as well as solutions to them: it is the creation and sharing of common views, concepts and images that play a key role in European integration. Drawing on texts and speeches produced by the European Commission, the study throws light on the development of European social policy during the first years of the 2000s. The study "freeze-frames" the welfare debate having its starting points in the nation states in the name of the entity of Europe. The first article approaches the European social model as a story in itself, a preparatory, persuasive narrative that concerns the management of change. The article shows how the audience can be motivated to work towards a set target by using discursive elements in a persuasive manner: the function of a persuasive story is to convince the target audience of the appropriateness of the chosen direction and to shape their identity so that they are favourably disposed to the desired political targets. This is a kind of "intermediate state" where the story, despite its inner contradictions and inaccuracies, succeeds in appearing as an almost self-evident path towards a modern social policy that Europe is currently seen to be in need of. The second article outlines the European social model as a question of governance. Health as a sector of social policy is detached from the old political order, which was based on the welfare state, and is closely linked to economy. At the same time the population is primarily seen as an economic resource. The Commission is working towards a "Europe of Health" that grapples with the problem of governance with the help of the "healthisation" of society, healthy citizenship and health economics. The way the Commission speaks is guided by the Union's powerful interest to act as "Europe" in the field of welfare policy. At the same time, the traditional separateness of health policy is effaced in order to be able to make health policy reforms a part of the Union's wider modernisation targets. The third article then shows the European social policy as its own area of governance. The article uses an approach based on critical discourse analysis in examining the classification systems and presentation styles adopted by Commission communications, as well as the identities that they help build. In analysing the "new start" of the Lisbon strategy from the perspective of social policy, the article shows how the emphasis has shifted from the persuasive arguments for change with necessary common European targets in the early stages of the strategy towards the implementation of reforms: from a narrative to a vision and from a diagnosis to healing. The phase of global competition represents "the modern" with which European society with its culture and ways of life now has to be matched. The Lisbon strategy is a way to direct this societal change, thus building a modern European social policy. The fourth article describes how the Commission uses its communications policy to build practices and techniques of governance and how it persuades citizens to participate in the creation of a European project of change. This also requires a new kind of agency: agents for whom accountability and responsibilities mean integration into and commitment to European society. Accountability is shaped into a decisive factor in implementing the European Union's strategy of change. As such it will displace hierarchical confrontations and emphasise common action with a view to modernising Europe. However, the Union's discourse cannot be described as being a political language that would genuinely rouse and convince the audience at the level of everyday life. Keywords: European social policy, EU policy, European social model, European Commission, modernisation of welfare, welfare state, communications, discoursiveness.
Resumo:
We report a nuclear magnetic resonance (NMR) study of confined water inside similar to 1.4 nm diameter single-walled carbon nanotubes (SWNTs). We show that the confined water does not freeze even up to 223 K. A pulse field gradient (PFG) NMR method is used to determine the mean squared displacement (MSD) of the water molecules inside the nanotubes at temperatures below 273 K, where the bulk water outside the nanotubes freezes and hence does not contribute to the proton NMR signal. We show that the mean squared displacement varies as the square root of time, predicted for single-file diffusion in a one-dimensional channel. We propose a qualitative understanding of our results based on available molecular dynamics simulations.
Resumo:
Telluric Acid Ammonium Phosphate (Te(OH)62(NH4)H2PO4(NH4)2HPO4) reffered to as TAAP is a recently discovered class m ferroelectric.1 It undergoes FE-PE transition at 48°C. Switching studies in this crystal has been carried out in the temperature range -14°C to 39°C by applying fields up to 4 kV/cm. Measurements were carried out on (101) plates cut from the crystals grown from solution. X-ray irradiation was carried out at room temperature by means of an x-ray tube operating at 25 kV and 15 mA with copper target. Air drying silver paste was used as electrodes. Samples were checked for hysteresis loop using a modified Sawyer-Tower circuit. The Ps value obtained from the loop is 2.1 μC/cm2 which is comparable to the earlier reported value. It was however noticed that the loop was slightly shifted to right with respect to the origin indicating the presence of a small internal bias which was 100 V/cm in the virgin crystal. This bias could not be removed even after repeated crystallization. On irradiation the internal biasing field increased which was indicated by a further shift of the hysteresis loop. The bias seems to saturate at about 750 V/cm for which the crystal had to be irradiated for about 3 hours.
Resumo:
The cloned DNA fragment of the cytochrome P-450b/e gene containing the upstream region from position -179 through part of the first exon is faithfully transcribed in freeze-thawed rat liver nuclei. Phenobarbitone treatment of the animal strikingly increases this transcription, and the increase is blocked by cycloheximide (protein synthesis inhibitor) or CoCl2 (heme biosynthetic inhibitor) treatment of animals. This picture correlates very well with the reported cytochrome P-450b/e mRNA levels in vivo and run-on transcription rates in vitro under these conditions. The upstream region (from position -179) was assessed for protein binding with nuclear extracts by nitrocellulose filter binding, gel retardation, DNase I treatment ("footprinting"), and Western blot analysis. Phenobarbitone treatment dramatically increases protein binding to the upstream region, an increase once again blocked by cycloheximide or CoCl2 treatments. Addition of heme in vitro to heme-deficient nuclei and nuclear extracts restores the induced levels of transcription and protein binding to the upstream fragment, respectively. Thus, drug-mediated synthesis and heme-modulated binding of a transcription factor(s) appear involved in the transcriptional activation of the cytochrome P-450b/e genes, and an 85-kDa protein may be a major factor in this regard.
Resumo:
The simplified model of human tear fluid (TF) is a three-layered structure composed of a homogenous gel-like layer of hydrated mucins, an aqueous phase, and a lipid-rich outermost layer found in the tear-air interface. It is assumed that amphiphilic phospholipids are found adjacent to the aqueous-mucin layer and externally to this a layer composed of non-polar lipids face the tear-air interface. The lipid layer prevents evaporation of the TF and protects the eye, but excess accumulation of lipids may lead to drying of the corneal epithelium. Thus the lipid layer must be controlled and maintained by some molecular mechanisms. In the circulation, phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) mediate lipid transfers. The aim of this thesis was to investigate the presence and molecular mechanisms of lipid transfer proteins in human TF. The purpose was also to study the role of these proteins in the development of dry eye syndrome (DES). The presence of TF PLTP and CETP was studied by western blotting and mass spectrometry. The concentration of these proteins was determined by ELISA. The activities of the enzymes were determined by specific lipid transfer assays. To study the molecular mechanisms involved in PLTP mediated lipid transfer Langmuir monolayers and asymmetrical flow field-flow fractionation (AsFlFFF) was used. Ocular tissue samples were stained with monoclonal antibodies against PLTP to study the secretion route of PLTP. Heparin-Sepharose affinity chromatography was used for PLTP pull-down experiments and co-eluted proteins were identified with MALDI-TOF mass spectrometry or Western blot analysis. To study whether PLTP plays any functional role in TF PLTP-deficient mice were examined. The activity of PLTP was also studied in dry eye patients. PLTP is a component of normal human TF, whereas CETP is not. TF PLTP concentration was about 2-fold higher than that in human plasma. Inactivation of PLTP by heat treatment or immunoinhibition abolished the phospholipid transfer activity in tear fluid. PLTP was found to be secreted from lacrimal glands. PLTP seems to be surface active and is capable of accepting lipid molecules without the presence of lipid-protein complexes. The active movement of radioactively labeled lipids and high activity form of PLTP to acceptor particles suggested a shuttle model of PLTP-mediated lipid transfer. In this model, PLTP physically transports lipids between the donor and acceptor. Protein-protein interaction assays revealed ocular mucins as PLTP interaction partners in TF. In mice with a full deficiency of functional PLTP enhanced corneal epithelial damage, increased corneal permeability to carboxyfluorescein, and decreased corneal epithelial occludin expression was demonstrated. Increased tear fluid PLTP activity was observed among human DES patients. These results together suggest a scavenger property of TF PLTP: if the corneal epithelium is contaminated by hydrophobic material, PLTP could remove them and transport them to the superficial layer of the TF or, alternatively, transport them through the naso-lacrimal duct. Thus, PLTP might play an integral role in tear lipid trafficking and in the protection of the corneal epithelium. The increased PLTP activity in human DES patients suggests an ocular surface protective role for this lipid transfer protein.
Resumo:
Microchips for use in biomolecular analysis show a lot of promise for medical diagnostics and biomedical basic research. Among the potential advantages are more sensitive and faster analyses as well as reduced cost and sample consumption. Due to scaling laws, the surface are to volume ratios of microfluidic chips is very high. Because of this, tailoring the surface properties and surface functionalization are very important technical issues for microchip development. This thesis studies two different types of functional surfaces, surfaces for open surface capillary microfluidics and surfaces for surface assisted laser desorption ionization mass spectrometry, and combinations thereof. Open surface capillary microfluidics can be used to transport and control liquid samples on easily accessible open surfaces simply based on surface forces, without any connections to pumps or electrical power sources. Capillary filling of open partially wetting grooves is shown to be possible with certain geometries, aspect ratios and contact angles, and a theoretical model is developed to identify complete channel filling domains, as well as partial filling domains. On the other hand, partially wetting surfaces with triangular microstructures can be used for achieving directional wetting, where the water droplets do not spread isotropically, but instead only spread to a predetermined sector. Furthermore, by patterning completely wetting and superhydrophobic areas on the same surface, complex droplet shapes are achieved, as the water stretches to make contact with the wetting surface, but does not enter into the superhydrophobic domains. Surfaces for surface assisted laser desorption ionization mass spectrometry are developed by applying various active thin film coatings on multiple substrates, in order to separate surface and bulk effects. Clear differences are observed between both surface and substrate layers. The best performance surfaces consisted of amorphous silicon coating and an inorganic-organic hybrid substrate, with nanopillars and nanopores. These surfaces are used for matrix-free ionization of drugs, peptides and proteins, and for some analytes, the detection limits were in the high attomoles. Microfluidics and laser desorption ionization surfaces are combined on a functionalized drying platforms, where the surface is used to control the shape of the deposited analyte droplet, and the shape of the initial analyte droplet affects the dried droplet solute deposition pattern. The deposited droplets can then directly detected by mass spectrometry. Utilizing this approach, results of analyte concentration, splitting and separation are demonstrated.
Resumo:
Bacteria growing in paper machines can cause several problems. Biofilms detaching from paper machine surfaces may lead to holes and spots in the end product or even break the paper web leading to expensive delays in production. Heat stable endospores will remain viable through the drying section of paper machine, increasing the microbial contamination of paper and board. Of the bacterial species regularly found in the end products, Bacillus cereus is the only one classified as a pathogen. Certain B. cereus strains produce cereulide, the toxin that causes vomiting disease in food poisonings connected to B. cereus. The first aim of this thesis was to identify harmful bacterial species colonizing paper machines and to assess the role of bacteria in the formation of end product defects. We developed quantitative PCR methods for detecting Meiothermus spp. and Pseudoxanthomonas taiwanensis. Using these methods I showed that Meiothermus spp. and Psx. taiwanensis are major biofoulers in paper machines. I was the first to be able to show the connection between end product defects and biofilms in the wet-end of paper machines. I isolated 48 strains of primary-biofilm forming bacteria from paper machines. Based on one of them, strain K4.1T, I described a novel bacterial genus Deinobacterium with Deinobacterium chartae as the type species. I measured the transfer of Bacillus cereus spores from packaging paper into food. To do this, we constructed a green fluorescent protein (GFP) labelled derivative of Bacillus thuringiensis and prepared paper containing spores of this strain. Chocolate and rice were the recipient foods when transfer of the labelled spores from the packaging paper to food was examined. I showed that only minority of the Bacillus cereus spores transferred into food from packaging paper and that this amount is very low compared to the amount of B. cereus naturally occurring in foods. Thus the microbiological risk caused by packaging papers is very low. Until now, the biological function of cereulide for the producer cell has remained unknown. I showed that B. cereus can use cereulide to take up K+ from environment where K+ is scarce: cereulide binds K+ ions outside the cell with high affinity and transports these ions across cell membrane into the cytoplasm. Externally added cereulide increased the growth rate of cereulide producing strains in medium where potassium was growth limiting. In addition, cereulide producing strains outcompeted cereulide non-producing B. cereus in potassium deficient environment, but not when the potassium concentration was high. I also showed that cereulide enhances biofilm formation of B. cereus.
Resumo:
Tutkielman kirjallisuusosassa perehdyttiin vehnän, rukiin ja ohran, eli Triticeaeprolamiinien erityisasemaan keliakianäkökulmasta tarkasteltuna ja prolamiinien hydrolyysiin proliinispesifeillä entsyymeillä. Lisäksi tarkasteltiin prolamiinien immunologisia määritysmenetelmiä. Keliakiassa haitalliset gluteenipeptidit sisältävät runsaasti proliinia ja ovat hankalia pilkkoa muilla kuin proliinispesifeillä peptidaaseilla. Suurin osa immunologisen reaktion aiheuttavista gluteenilähtöisistä peptideistä voidaan pilkkoa idätetyn viljan endogeenisilla entsyymeillä happamissa olosuhteissa, mutta jäljellejäävä prolamiinipitoisuus ylittää edelleen gluteenittomille tuotteille sallitun rajan. Kokeellisen työn tavoitteena oli eliminoida happamalla mallasinkubaatiolla valmistettujen vehnä-, ohra- ja ruismallasautolysaattien sisältämä jäännösprolamiini Aspergillus niger -homeen tuottamalla proliinispesifillä endopeptidaasilla (AN-PEP) siten, että hydrolysaattia voitaisiin käyttää gluteenittomissa leivontasovelluksissa. Proteiinien hydrolyysiä tarkkailtiin kokoekskluusiokromatografialla (SEC), vapaan aminotypen (FAN) muodostumisena ja SDS-PAGE-elektroforeesilla. Jäännösprolamiinien pilkkoutumista seurattiin immunologisella R5-ELISA-menetelmällä. AN-PEP-inkubaatiolla saatiin aikaan voimakasta prolamiinien pilkkoutumista; mallasautolysaattien jäännösprolamiinista pilkkoutui yli 96 %. SEC- ja FAN-analyysien perusteella inkubaatioaikaa kannatti jatkaa yli 4 h, jolloin polypeptidit pilkkoutuivat edelleen pienemmiksi hydrolyysituotteiksi. Vehnä- ja ruismallashydrolysaattien prolamiinipitoisuuden todettiin laskevan 22 h inkubaation aikana alle tason 100 mg/kg R5-ELISA-menetelmällä määritettynä. Matalimmat prolamiinipitoisuudet saavutettiin AN-PEP-pitoisuudella 35 ?l / g mallasautolysaattia. Codex Alimentarius -komission säädöksen mukaan keliakiaruokavalioon soveltuvat ns. erittäin vähägluteeniset tuotteet saavat sisältää gluteenia enintään 100 mg/kg. Erityisesti AN-PEP-käsiteltyä ruismallasraaka-ainetta voitaisiin mahdollisesti käyttää tuomaan rukiista aromia gluteenittomiin leipiin. Ennen kuin mallashydrolysaatit ovat valmiita kaupallisiin sovelluksiin, on tarkasteltava niiden todellisia mahdollisuuksia parantaa elintarvikkeiden makua ja aromia sekä todettava uuden teknologian turvallisuus keliaakikoille.
Resumo:
Viime aikoina ilmastonmuutos, fossiilisten polttoaineiden väheneminen ja niiden hinnan nousu ovat lisänneet merkittävästi maailmanlaajuista kiinnostusta uusiutuviin energiavaroihin. Suomessa uusiutuvien energialähteiden käytössä on jo pitkään panostettu metsäteollisuuden sivutuotevirtana tuottamaan puuperäiseen biomassaan, jota metsäteollisuus käyttää energiantuotantoonsa. Metsäteollisuuden jätevesien käsittelyssä syntyy erilaisia lietteitä, jotka joko uusiokäytetään tai hävitetään polttamalla tai sijoittamalla kaatopaikalle. Erityisesti biolietteiden uusiokäyttö on hankalaa ja kaatopaikkasijoitus tulevaisuudessa mahdotonta tai ainakin kustannuksiltaan kohtuutonta. Käytännössä liete hävitetään polttamalla ja kuivaamalla siitä tulee polttoaine. Lietteiden energiakäyttö on järkevin tapa hävittää jäteliete. Lietteiden korkean vesipitoisuuden vuoksi ne tulee kuitenkin kuivata ennen polttoa. Lietteen kuivaaminen sekundäärienergiavirralla eli metsäteollisuusprosesseissa sivutuotteena muodostuvalla ns. hukkalämmöllä lisää lietteen poltosta saatavaa energiamäärää ja korvaa fossiilisten polttoaineiden käyttöä. Tutkimuksen tavoitteena oli selvittää lietteen kuivaukseen optimaalisin kuoren ja lietteen seossuhde eri kuivausparametrejä vaihdellen. Kokeellinen työ aloitettiin rakentamalla energiatekniikan koehalliin laboratoriokokoluokan kiintopetikuivuri, jossa kuivumista tutkittiin puhaltamalla polttoainepedin läpi lämmitettyä ilmaa. Kuivattavina polttoaineina olivat kuoren ja lietteen seos tai pelkkä kuori ja liete erilaisilla massoilla ja erilaisilla prosenttisilla suhteilla ja erilaisissa lämpötiloissa. Kuivumiskäyrien määritys perustui massanmuutokseen. Koelaitteessa olivat anturit lämpötilan mittausta varten, jotta lämpötila saatiin säädettyä ja seurattua kokeen edellyttämällä tavalla. Lämpötilat ja painonmuutokset tallentuivat koetta tehdessä tietokoneelle. Kuivauskokeet osoittivat, että liete-kuori seos kuivuu hyvin kiintopedissä kun lietteen massaosuus seoksessa on korkeintaan 50 %. Lietteen massaosuuden ollessa tätä suurempi kuivaaminen ei enää ole tehokasta, mikä johtuu luultavasti ilman suuresta kanavoitumisesta kuivauspedissä. Kuorta kuivatessa lämpötilan nosto 50 °C:stä 70 °C:een oli huomattavasti tehokkaampaa kuin 70 °C:stä 90 °C:een, ajallisesti ero oli noin kaksinkertainen.