999 resultados para Episcopal complex
Resumo:
A novel cavity perturbation technique using coaxial cavity resonators for the measurement of complex permittivity of liquids is presented. The method employs two types of resonators (Resonator I and Resonator II). Resonator I operates in the frequency range 600 MHz-7 GHz and resonator II operates in the frequency range 4 GHz-14 GHz. The introduction of the capillary tube filled with the sample liquid into the coaxial resonator causes shifts in the resonance frequency and loaded Q-factor of the resonator. The shifts in the resonance frequency and loaded Q-factor are used to determine the real and imaginary parts of the complex permittivity of the sample liquid, respectively. Using this technique, the dielectric parameters of water and nitrobenzene are measured. The results are compared with those obtained using other standard methods. The sources of errors are analyzed.
Resumo:
Oxovanadium(IV/V) complexes of 2-hydroxyacetophenone- 3-hydroxy-2-naphthoylhydrazone (H2L) have been synthesized and characterized. The complexes were characterized by elemental analyses, IR, electronic and EPR spectra. The oxovanadium(V) complex [VOL (OCH3)] is crystallized in two polymorphic forms, denoted by 1a and 1b, with space groups Pn21a and P 1, respectively. Both have distorted square pyramidal structures.
Resumo:
An unusual copper(II) complex [Cu(L1a)2Cl2] CH3OH H2O H3O+Cl (1a) was isolated from a solution of a novel tricopper(II) complex [Cu3(HL1)Cl2]Cl3 2H2O (1) in methanol, where L1a is 3-(2-pyridyl)triazolo [1,5-a]-pyridine, and characterized with single crystal X-ray diffraction study. The tricopper(II) complex of potential ligand 1,5-bis(di-2-pyridyl ketone) carbohydrazone (H2L1) was synthesized and physicochemically characterized, while the formation of the complex 1a was followed by time-dependant monitoring of the UV–visible spectra, which reveals degradation of ligand backbone as intensity loss of bands corresponding to O?Cu(II) charge transfer
Resumo:
A novel binuclear Ni(II) complex of salicylaldehyde 3-azacyclothiosemicarbazone (H2L) has been synthesized and characterized by elemental analysis, IR and UV–Vis spectroscopy. The single crystal X-ray structure of the complex shows that bridging occurs through thiolato sulfur and phenolic oxygen atoms. Nickel centers in the complex have square planar and octahedral geometries
Resumo:
A Multi-Objective Antenna Placement Genetic Algorithm (MO-APGA) has been proposed for the synthesis of matched antenna arrays on complex platforms. The total number of antennas required, their position on the platform, location of loads, loading circuit parameters, decoupling and matching network topology, matching network parameters and feed network parameters are optimized simultaneously. The optimization goal was to provide a given minimum gain, specific gain discrimination between the main and back lobes and broadband performance. This algorithm is developed based on the non-dominated sorting genetic algorithm (NSGA-II) and Minimum Spanning Tree (MST) technique for producing diverse solutions when the number of objectives is increased beyond two. The proposed method is validated through the design of a wideband airborne SAR
Resumo:
Six new copper complexes of di-2-pyridyl ketone nicotinoylhydrazone (HDKN) have been synthesized. The complexes have been characterized by a variety of spectroscopic techniques and the structure of [Cu(DKN)2]·H2O has been determined by single crystal X-ray diffraction. The compound [Cu(DKN)2]·H2O crystallized in the monoclinic space group P21 and has a distorted octahedral geometry. The IR spectra revealed the presence of variable modes of chelation for the investigated ligand. The EPR spectra of compounds [Cu2(DKN)2( -N3)2] and [Cu2(DKN)2( -NCS)2] in polycrystalline state suggest a dimeric structure as they exhibited a half field signal, which indicate the presence of a weak interaction between two Cu(II) ions in these complexes
Resumo:
Die relativistische Multikonfigurations Dirac-Fock (MCDF) Methode ist gegenwärtig eines der am häufigsten benutzten Verfahren zur Berechnung der elektronischen Struktur und der Eigenschaften freier Atome. In diesem Verfahren werden die Wellenfunktionen ausgewählter atomarer Zustände als eine Linearkombination von sogenannten Konfigurationszuständen (CSF - Configuration State Functions) konstruiert, die in einem Teilraum des N-Elektronen Hilbert-Raumes eine (Vielteilchen-)Basis aufspannen. Die konkrete Konstruktion dieser Basis entscheidet letzlich über die Güte der Wellenfunktionen, die üblicherweise mit Hilfe einer Variation des Erwartungswertes zum no-pair Dirac-Coulomb Hamiltonoperators gewonnen werden. Mit Hilfe von MCDF Wellenfunktionen können die dominanten relativistischen und Korrelationseffekte in freien Atomen allgemein recht gut erfaßt und verstanden werden. Außer der instantanen Coulombabstoßung zwischen allen Elektronenpaaren werden dabei auch die relativistischen Korrekturen zur Elektron-Elektron Wechselwirkung, d.h. die magnetischen und Retardierungsbeiträge in der Wechselwirkung der Elektronen untereinander, die Ankopplung der Elektronen an das Strahlungsfeld sowie der Einfluß eines ausgedehnten Kernmodells erfaßt. Im Vergleich mit früheren MCDF Rechnungen werden in den in dieser Arbeit diskutierten Fallstudien Wellenfunktionsentwicklungen verwendet, die um 1-2 Größenordnungen aufwendiger sind und daher systematische Untersuchungen inzwischen auch an Atomen mit offenen d- und f-Schalen erlauben. Eine spontane Emission oder Absorption von Photonen kann bei freien Atomen theoretisch am einfachsten mit Hilfe von Übergangswahrscheinlichkeiten erfaßt werden. Solche Daten werden heute in vielen Forschungsbereichen benötigt, wobei neben den traditionellen Gebieten der Fusionsforschung und Astrophysik zunehmend auch neue Forschungsrichtungen (z.B. Nanostrukturforschung und Röntgenlithographie) zunehmend ins Blickfeld rücken. Um die Zuverlässigkeit unserer theoretischen Vorhersagen zu erhöhen, wurde in dieser Arbeit insbesondere die Relaxation der gebundenen Elektronendichte, die rechentechnisch einen deutlich größeren Aufwand erfordert, detailliert untersucht. Eine Berücksichtigung dieser Relaxationseffekte führt oftmals auch zu einer deutlich besseren Übereinstimmung mit experimentellen Werten, insbesondere für dn=1 Übergänge sowie für schwache und Interkombinationslinien, die innerhalb einer Hauptschale (dn=0) vorkommen. Unsere in den vergangenen Jahren verbesserten Rechnungen zu den Wellenfunktionen und Übergangswahrscheinlichkeiten zeigen deutlich den Fortschritt bei der Behandlung komplexer Atome. Gleichzeitig kann dieses neue Herangehen künftig aber auch auf (i) kompliziertere Schalensstrukturen, (ii) die Untersuchung von Zwei-Elektronen-ein-Photon (TEOP) Übergängen sowie (iii) auf eine Reihe weiterer atomarer Eigenschaften übertragen werden, die bekanntermaßen empflindlich von der Relaxation der Elektronendichte abhängen. Dies sind bspw. Augerzerfälle, die atomare Photoionisation oder auch strahlende und dielektronische Rekombinationsprozesse, die theoretisch bisher nur selten überhaupt in der Dirac-Fock Näherung betrachtet wurden.
Resumo:
Designing is a heterogeneous, fuzzily defined, floating field of various activities and chunks of ideas and knowledge. Available theories about the foundations of designing as presented in "the basic PARADOX" (Jonas and Meyer-Veden 2004) have evoked the impression of Babylonian confusion. We located the reasons for this "mess" in the "non-fit", which is the problematic relation of theories and subject field. There seems to be a comparable interface problem in theory-building as in designing itself. "Complexity" sounds promising, but turns out to be a problematic and not really helpful concept. I will argue for a more precise application of systemic and evolutionary concepts instead, which - in my view - are able to model the underlying generative structures and processes that produce the visible phenomenon of complexity. It does not make sense to introduce a new fashionable meta-concept and to hope for a panacea before having clarified the more basic and still equally problematic older meta-concepts. This paper will take one step away from "theories of what" towards practice and doing and try to have a closer look at existing process models or "theories of how" to design instead. Doing this from a systemic perspective leads to an evolutionary view of the process, which finally allows to specify more clearly the "knowledge gaps" inherent in the design process. This aspect has to be taken into account as constitutive of any attempt at theory-building in design, which can be characterized as a "practice of not-knowing". I conclude, that comprehensive "unified" theories, or methods, or process models run aground on the identified knowledge gaps, which allow neither reliable models of the present, nor reliable projections into the future. Consolation may be found in performing a shift from the effort of adaptation towards strategies of exaptation, which means the development of stocks of alternatives for coping with unpredictable situations in the future.
Resumo:
The identification of chemical mechanism that can exhibit oscillatory phenomena in reaction networks are currently of intense interest. In particular, the parametric question of the existence of Hopf bifurcations has gained increasing popularity due to its relation to the oscillatory behavior around the fixed points. However, the detection of oscillations in high-dimensional systems and systems with constraints by the available symbolic methods has proven to be difficult. The development of new efficient methods are therefore required to tackle the complexity caused by the high-dimensionality and non-linearity of these systems. In this thesis, we mainly present efficient algorithmic methods to detect Hopf bifurcation fixed points in (bio)-chemical reaction networks with symbolic rate constants, thereby yielding information about their oscillatory behavior of the networks. The methods use the representations of the systems on convex coordinates that arise from stoichiometric network analysis. One of the methods called HoCoQ reduces the problem of determining the existence of Hopf bifurcation fixed points to a first-order formula over the ordered field of the reals that can then be solved using computational-logic packages. The second method called HoCaT uses ideas from tropical geometry to formulate a more efficient method that is incomplete in theory but worked very well for the attempted high-dimensional models involving more than 20 chemical species. The instability of reaction networks may lead to the oscillatory behaviour. Therefore, we investigate some criterions for their stability using convex coordinates and quantifier elimination techniques. We also study Muldowney's extension of the classical Bendixson-Dulac criterion for excluding periodic orbits to higher dimensions for polynomial vector fields and we discuss the use of simple conservation constraints and the use of parametric constraints for describing simple convex polytopes on which periodic orbits can be excluded by Muldowney's criteria. All developed algorithms have been integrated into a common software framework called PoCaB (platform to explore bio- chemical reaction networks by algebraic methods) allowing for automated computation workflows from the problem descriptions. PoCaB also contains a database for the algebraic entities computed from the models of chemical reaction networks.
Resumo:
In this thesis, optical gain measurement setup based on variable stripe length method is designed, implemented and improved. The setup is characterized using inorganic and organic samples. The optical gain of spiro-quaterphenyl is calculated and compared with measurements from the setup. Films with various thicknesses of spiro-quaterphenyl, methoxy-spiro-quaterphenyl and phenoxy-spiro-quaterphenyl are deposited by a vacuum vapor deposition technique forming asymmetric slab waveguides. The optical properties, laser emission threshold, optical gain and loss coefficient for these films are measured. Additionally, the photodegradation during pumping process is investigated.
Resumo:
Autonomous vehicles are increasingly being used in mission-critical applications, and robust methods are needed for controlling these inherently unreliable and complex systems. This thesis advocates the use of model-based programming, which allows mission designers to program autonomous missions at the level of a coach or wing commander. To support such a system, this thesis presents the Spock generative planner. To generate plans, Spock must be able to piece together vehicle commands and team tactics that have a complex behavior represented by concurrent processes. This is in contrast to traditional planners, whose operators represent simple atomic or durative actions. Spock represents operators using the RMPL language, which describes behaviors using parallel and sequential compositions of state and activity episodes. RMPL is useful for controlling mobile autonomous missions because it allows mission designers to quickly encode expressive activity models using object-oriented design methods and an intuitive set of activity combinators. Spock also is significant in that it uniformly represents operators and plan-space processes in terms of Temporal Plan Networks, which support temporal flexibility for robust plan execution. Finally, Spock is implemented as a forward progression optimal planner that walks monotonically forward through plan processes, closing any open conditions and resolving any conflicts. This thesis describes the Spock algorithm in detail, along with example problems and test results.
Resumo:
This paper investigates the linear degeneracies of projective structure estimation from point and line features across three views. We show that the rank of the linear system of equations for recovering the trilinear tensor of three views reduces to 23 (instead of 26) in the case when the scene is a Linear Line Complex (set of lines in space intersecting at a common line) and is 21 when the scene is planar. The LLC situation is only linearly degenerate, and we show that one can obtain a unique solution when the admissibility constraints of the tensor are accounted for. The line configuration described by an LLC, rather than being some obscure case, is in fact quite typical. It includes, as a particular example, the case of a camera moving down a hallway in an office environment or down an urban street. Furthermore, an LLC situation may occur as an artifact such as in direct estimation from spatio-temporal derivatives of image brightness. Therefore, an investigation into degeneracies and their remedy is important also in practice.
Resumo:
Exercises and solutions for a third year engineering maths course. Diagrams for the question are all together in the support.zip file, as .eps files