982 resultados para Direct Simulation Monte Carlo Method
Resumo:
Notre consommation en eau souterraine, en particulier comme eau potable ou pour l'irrigation, a considérablement augmenté au cours des années. De nombreux problèmes font alors leur apparition, allant de la prospection de nouvelles ressources à la remédiation des aquifères pollués. Indépendamment du problème hydrogéologique considéré, le principal défi reste la caractérisation des propriétés du sous-sol. Une approche stochastique est alors nécessaire afin de représenter cette incertitude en considérant de multiples scénarios géologiques et en générant un grand nombre de réalisations géostatistiques. Nous rencontrons alors la principale limitation de ces approches qui est le coût de calcul dû à la simulation des processus d'écoulements complexes pour chacune de ces réalisations. Dans la première partie de la thèse, ce problème est investigué dans le contexte de propagation de l'incertitude, oú un ensemble de réalisations est identifié comme représentant les propriétés du sous-sol. Afin de propager cette incertitude à la quantité d'intérêt tout en limitant le coût de calcul, les méthodes actuelles font appel à des modèles d'écoulement approximés. Cela permet l'identification d'un sous-ensemble de réalisations représentant la variabilité de l'ensemble initial. Le modèle complexe d'écoulement est alors évalué uniquement pour ce sousensemble, et, sur la base de ces réponses complexes, l'inférence est faite. Notre objectif est d'améliorer la performance de cette approche en utilisant toute l'information à disposition. Pour cela, le sous-ensemble de réponses approximées et exactes est utilisé afin de construire un modèle d'erreur, qui sert ensuite à corriger le reste des réponses approximées et prédire la réponse du modèle complexe. Cette méthode permet de maximiser l'utilisation de l'information à disposition sans augmentation perceptible du temps de calcul. La propagation de l'incertitude est alors plus précise et plus robuste. La stratégie explorée dans le premier chapitre consiste à apprendre d'un sous-ensemble de réalisations la relation entre les modèles d'écoulement approximé et complexe. Dans la seconde partie de la thèse, cette méthodologie est formalisée mathématiquement en introduisant un modèle de régression entre les réponses fonctionnelles. Comme ce problème est mal posé, il est nécessaire d'en réduire la dimensionnalité. Dans cette optique, l'innovation du travail présenté provient de l'utilisation de l'analyse en composantes principales fonctionnelles (ACPF), qui non seulement effectue la réduction de dimensionnalités tout en maximisant l'information retenue, mais permet aussi de diagnostiquer la qualité du modèle d'erreur dans cet espace fonctionnel. La méthodologie proposée est appliquée à un problème de pollution par une phase liquide nonaqueuse et les résultats obtenus montrent que le modèle d'erreur permet une forte réduction du temps de calcul tout en estimant correctement l'incertitude. De plus, pour chaque réponse approximée, une prédiction de la réponse complexe est fournie par le modèle d'erreur. Le concept de modèle d'erreur fonctionnel est donc pertinent pour la propagation de l'incertitude, mais aussi pour les problèmes d'inférence bayésienne. Les méthodes de Monte Carlo par chaîne de Markov (MCMC) sont les algorithmes les plus communément utilisés afin de générer des réalisations géostatistiques en accord avec les observations. Cependant, ces méthodes souffrent d'un taux d'acceptation très bas pour les problèmes de grande dimensionnalité, résultant en un grand nombre de simulations d'écoulement gaspillées. Une approche en deux temps, le "MCMC en deux étapes", a été introduite afin d'éviter les simulations du modèle complexe inutiles par une évaluation préliminaire de la réalisation. Dans la troisième partie de la thèse, le modèle d'écoulement approximé couplé à un modèle d'erreur sert d'évaluation préliminaire pour le "MCMC en deux étapes". Nous démontrons une augmentation du taux d'acceptation par un facteur de 1.5 à 3 en comparaison avec une implémentation classique de MCMC. Une question reste sans réponse : comment choisir la taille de l'ensemble d'entrainement et comment identifier les réalisations permettant d'optimiser la construction du modèle d'erreur. Cela requiert une stratégie itérative afin que, à chaque nouvelle simulation d'écoulement, le modèle d'erreur soit amélioré en incorporant les nouvelles informations. Ceci est développé dans la quatrième partie de la thèse, oú cette méthodologie est appliquée à un problème d'intrusion saline dans un aquifère côtier. -- Our consumption of groundwater, in particular as drinking water and for irrigation, has considerably increased over the years and groundwater is becoming an increasingly scarce and endangered resource. Nofadays, we are facing many problems ranging from water prospection to sustainable management and remediation of polluted aquifers. Independently of the hydrogeological problem, the main challenge remains dealing with the incomplete knofledge of the underground properties. Stochastic approaches have been developed to represent this uncertainty by considering multiple geological scenarios and generating a large number of realizations. The main limitation of this approach is the computational cost associated with performing complex of simulations in each realization. In the first part of the thesis, we explore this issue in the context of uncertainty propagation, where an ensemble of geostatistical realizations is identified as representative of the subsurface uncertainty. To propagate this lack of knofledge to the quantity of interest (e.g., the concentration of pollutant in extracted water), it is necessary to evaluate the of response of each realization. Due to computational constraints, state-of-the-art methods make use of approximate of simulation, to identify a subset of realizations that represents the variability of the ensemble. The complex and computationally heavy of model is then run for this subset based on which inference is made. Our objective is to increase the performance of this approach by using all of the available information and not solely the subset of exact responses. Two error models are proposed to correct the approximate responses follofing a machine learning approach. For the subset identified by a classical approach (here the distance kernel method) both the approximate and the exact responses are knofn. This information is used to construct an error model and correct the ensemble of approximate responses to predict the "expected" responses of the exact model. The proposed methodology makes use of all the available information without perceptible additional computational costs and leads to an increase in accuracy and robustness of the uncertainty propagation. The strategy explored in the first chapter consists in learning from a subset of realizations the relationship between proxy and exact curves. In the second part of this thesis, the strategy is formalized in a rigorous mathematical framework by defining a regression model between functions. As this problem is ill-posed, it is necessary to reduce its dimensionality. The novelty of the work comes from the use of functional principal component analysis (FPCA), which not only performs the dimensionality reduction while maximizing the retained information, but also allofs a diagnostic of the quality of the error model in the functional space. The proposed methodology is applied to a pollution problem by a non-aqueous phase-liquid. The error model allofs a strong reduction of the computational cost while providing a good estimate of the uncertainty. The individual correction of the proxy response by the error model leads to an excellent prediction of the exact response, opening the door to many applications. The concept of functional error model is useful not only in the context of uncertainty propagation, but also, and maybe even more so, to perform Bayesian inference. Monte Carlo Markov Chain (MCMC) algorithms are the most common choice to ensure that the generated realizations are sampled in accordance with the observations. Hofever, this approach suffers from lof acceptance rate in high dimensional problems, resulting in a large number of wasted of simulations. This led to the introduction of two-stage MCMC, where the computational cost is decreased by avoiding unnecessary simulation of the exact of thanks to a preliminary evaluation of the proposal. In the third part of the thesis, a proxy is coupled to an error model to provide an approximate response for the two-stage MCMC set-up. We demonstrate an increase in acceptance rate by a factor three with respect to one-stage MCMC results. An open question remains: hof do we choose the size of the learning set and identify the realizations to optimize the construction of the error model. This requires devising an iterative strategy to construct the error model, such that, as new of simulations are performed, the error model is iteratively improved by incorporating the new information. This is discussed in the fourth part of the thesis, in which we apply this methodology to a problem of saline intrusion in a coastal aquifer.
Resumo:
Intravascular brachytherapy with beta sources has become a useful technique to prevent restenosis after cardiovascular intervention. In particular, the Beta-Cath high-dose-rate system, manufactured by Novoste Corporation, is a commercially available 90Sr 90Y source for intravascular brachytherapy that is achieving widespread use. Its dosimetric characterization has attracted considerable attention in recent years. Unfortunately, the short ranges of the emitted beta particles and the associated large dose gradients make experimental measurements particularly difficult. This circumstance has motivated the appearance of a number of papers addressing the characterization of this source by means of Monte Carlo simulation techniques.
Resumo:
This dissertation is based on four articles dealing with modeling of ozonation. The literature part of this considers some models for hydrodynamics in bubble column simulation. A literature review of methods for obtaining mass transfer coefficients is presented. The methods presented to obtain mass transfer are general models and can be applied to any gas-liquid system. Ozonation reaction models and methods for obtaining stoichiometric coefficients and reaction rate coefficients for ozonation reactions are discussed in the final section of the literature part. In the first article, ozone gas-liquid mass transfer into water in a bubble column was investigated for different pH values. A more general method for estimation of mass transfer and Henry’s coefficient was developed from the Beltrán method. The ozone volumetric mass transfer coefficient and the Henry’s coefficient were determined simultaneously by parameter estimation using a nonlinear optimization method. A minor dependence of the Henry’s law constant on pH was detected at the pH range 4 - 9. In the second article, a new method using the axial dispersion model for estimation of ozone self-decomposition kinetics in a semi-batch bubble column reactor was developed. The reaction rate coefficients for literature equations of ozone decomposition and the gas phase dispersion coefficient were estimated and compared with the literature data. The reaction order in the pH range 7-10 with respect to ozone 1.12 and 0.51 the hydroxyl ion were obtained, which is in good agreement with literature. The model parameters were determined by parameter estimation using a nonlinear optimization method. Sensitivity analysis was conducted using object function method to obtain information about the reliability and identifiability of the estimated parameters. In the third article, the reaction rate coefficients and the stoichiometric coefficients in the reaction of ozone with the model component p-nitrophenol were estimated at low pH of water using nonlinear optimization. A novel method for estimation of multireaction model parameters in ozonation was developed. In this method the concentration of unknown intermediate compounds is presented as a residual COD (chemical oxygen demand) calculated from the measured COD and the theoretical COD for the known species. The decomposition rate of p-nitrophenol on the pathway producing hydroquinone was found to be about two times faster than the p-nitrophenol decomposition rate on the pathway producing 4- nitrocatechol. In the fourth article, the reaction kinetics of p-nitrophenol ozonation was studied in a bubble column at pH 2. Using the new reaction kinetic model presented in the previous article, the reaction kinetic parameters, rate coefficients, and stoichiometric coefficients as well as the mass transfer coefficient were estimated with nonlinear estimation. The decomposition rate of pnitrophenol was found to be equal both on the pathway producing hydroquinone and on the path way producing 4-nitrocathecol. Comparison of the rate coefficients with the case at initial pH 5 indicates that the p-nitrophenol degradation producing 4- nitrocathecol is more selective towards molecular ozone than the reaction producing hydroquinone. The identifiability and reliability of the estimated parameters were analyzed with the Marcov chain Monte Carlo (MCMC) method. @All rights reserved. No part of the publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of the author.
Resumo:
Tämän työn tarkoituksena oli tarkastella kohdeorganisaation hankintaprosessin suorituskykyä. Tutkimuksen päämääränä oli tuottaa yritykselle sellaista tietoa ja arviointikriteerejä, joiden avulla yritys voi kehittää valmiuksiaan oman suorituskyvyn tehokkaampaan arviointiin tulevaisuudessa. Tutkielma tehtiin Skanska Oy:n osto-osastolle Helsinkiin. Tutkimuksen kohteeksi valittiin kausisopimusten hankintaprosessi epäsuorissa hankinnoissa, kotimaisilla markkinoilla. Keskitetyn kausisopimusten hankintaprosessin tarkoituksena on tuottaa yritykselle kilpailukykyisiä sopimuksia sekä saavuttaa prosessin parempi hallinta ja läpinäkyvyys. Tietoa tutkimuksen kohteena olevasta prosessista kerättiin haastatteluilla ja keskustelutuokioilla sekä yrityksen dokumenteista. Aineiston keräämisen kautta pyrittiin saamaan syvempi kuva prosessin toiminnasta, sen ongelmakohdista sekä niiden syistä ja seurauksista. Toisen tarkastelunäkökulman prosessin arvioinnille tarjosi läpimenoajan mittaaminen. Saatua aineistoa luokiteltiin vika- ja vaikutusanalyysiin pohjautuvalla mallilla sekä Monte Carlo – simulaatiomenetelmään perustuvalla ohjelmalla. Työn tuloksena esitetään tutkimuksen kohteena olevalle prosessille sopivia kehitystoimenpiteitä sekä suositeltavia prosessin mittaamisalueita.
Resumo:
The general methodology of classical trajectories as applied to elementary chemical reactions of the A+BC type is presented. The goal is to elucidate students about the main theoretical features and potentialities in applying this versatile method to calculate the dynamical properties of reactive systems. Only the methodology for two-dimensional (2D) case is described, from which the general theory for 3D follows straightforwardly. The adopted point of view is, as much as possible, that of allowing a direct translation of the concepts into a working program. An application to the reaction O(¹D)+H2->O+OH with relevance in atmospheric chemistry is also presented. The FORTRAN codes used are available through the web page www.qqesc.qui.uc.pt.
Resumo:
The aim of this paper is to present a simple way of treating the general equation for acid-base titrations based on the concept of degree of dissociation, and to propose a new spreadsheet approach for simulating the titration of mixtures of polyprotic compounds. The general expression, without any approximation, is calculated a simple iteration method, making number manipulation easy and painless. The user-friendly spreadsheet was developed by using MS-Excel and Visual-Basic-for-Excel. Several graphs are drawn for helping visualizing the titration behavior. A Monte Carlo function for error simulation was also implemented. Two examples for titration of alkalinity and McIlvaine buffer are presented.
Resumo:
Standard indirect Inference (II) estimators take a given finite-dimensional statistic, Z_{n} , and then estimate the parameters by matching the sample statistic with the model-implied population moment. We here propose a novel estimation method that utilizes all available information contained in the distribution of Z_{n} , not just its first moment. This is done by computing the likelihood of Z_{n}, and then estimating the parameters by either maximizing the likelihood or computing the posterior mean for a given prior of the parameters. These are referred to as the maximum indirect likelihood (MIL) and Bayesian Indirect Likelihood (BIL) estimators, respectively. We show that the IL estimators are first-order equivalent to the corresponding moment-based II estimator that employs the optimal weighting matrix. However, due to higher-order features of Z_{n} , the IL estimators are higher order efficient relative to the standard II estimator. The likelihood of Z_{n} will in general be unknown and so simulated versions of IL estimators are developed. Monte Carlo results for a structural auction model and a DSGE model show that the proposed estimators indeed have attractive finite sample properties.
Resumo:
In any decision making under uncertainties, the goal is mostly to minimize the expected cost. The minimization of cost under uncertainties is usually done by optimization. For simple models, the optimization can easily be done using deterministic methods.However, many models practically contain some complex and varying parameters that can not easily be taken into account using usual deterministic methods of optimization. Thus, it is very important to look for other methods that can be used to get insight into such models. MCMC method is one of the practical methods that can be used for optimization of stochastic models under uncertainty. This method is based on simulation that provides a general methodology which can be applied in nonlinear and non-Gaussian state models. MCMC method is very important for practical applications because it is a uni ed estimation procedure which simultaneously estimates both parameters and state variables. MCMC computes the distribution of the state variables and parameters of the given data measurements. MCMC method is faster in terms of computing time when compared to other optimization methods. This thesis discusses the use of Markov chain Monte Carlo (MCMC) methods for optimization of Stochastic models under uncertainties .The thesis begins with a short discussion about Bayesian Inference, MCMC and Stochastic optimization methods. Then an example is given of how MCMC can be applied for maximizing production at a minimum cost in a chemical reaction process. It is observed that this method performs better in optimizing the given cost function with a very high certainty.
Resumo:
Digital business ecosystems (DBE) are becoming an increasingly popular concept for modelling and building distributed systems in heterogeneous, decentralized and open environments. Information- and communication technology (ICT) enabled business solutions have created an opportunity for automated business relations and transactions. The deployment of ICT in business-to-business (B2B) integration seeks to improve competitiveness by establishing real-time information and offering better information visibility to business ecosystem actors. The products, components and raw material flows in supply chains are traditionally studied in logistics research. In this study, we expand the research to cover the processes parallel to the service and information flows as information logistics integration. In this thesis, we show how better integration and automation of information flows enhance the speed of processes and, thus, provide cost savings and other benefits for organizations. Investments in DBE are intended to add value through business automation and are key decisions in building up information logistics integration. Business solutions that build on automation are important sources of value in networks that promote and support business relations and transactions. Value is created through improved productivity and effectiveness when new, more efficient collaboration methods are discovered and integrated into DBE. Organizations, business networks and collaborations, even with competitors, form DBE in which information logistics integration has a significant role as a value driver. However, traditional economic and computing theories do not focus on digital business ecosystems as a separate form of organization, and they do not provide conceptual frameworks that can be used to explore digital business ecosystems as value drivers—combined internal management and external coordination mechanisms for information logistics integration are not the current practice of a company’s strategic process. In this thesis, we have developed and tested a framework to explore the digital business ecosystems developed and a coordination model for digital business ecosystem integration; moreover, we have analysed the value of information logistics integration. The research is based on a case study and on mixed methods, in which we use the Delphi method and Internetbased tools for idea generation and development. We conducted many interviews with key experts, which we recoded, transcribed and coded to find success factors. Qualitative analyses were based on a Monte Carlo simulation, which sought cost savings, and Real Option Valuation, which sought an optimal investment program for the ecosystem level. This study provides valuable knowledge regarding information logistics integration by utilizing a suitable business process information model for collaboration. An information model is based on the business process scenarios and on detailed transactions for the mapping and automation of product, service and information flows. The research results illustrate the current cap of understanding information logistics integration in a digital business ecosystem. Based on success factors, we were able to illustrate how specific coordination mechanisms related to network management and orchestration could be designed. We also pointed out the potential of information logistics integration in value creation. With the help of global standardization experts, we utilized the design of the core information model for B2B integration. We built this quantitative analysis by using the Monte Carlo-based simulation model and the Real Option Value model. This research covers relevant new research disciplines, such as information logistics integration and digital business ecosystems, in which the current literature needs to be improved. This research was executed by high-level experts and managers responsible for global business network B2B integration. However, the research was dominated by one industry domain, and therefore a more comprehensive exploration should be undertaken to cover a larger population of business sectors. Based on this research, the new quantitative survey could provide new possibilities to examine information logistics integration in digital business ecosystems. The value activities indicate that further studies should continue, especially with regard to the collaboration issues on integration, focusing on a user-centric approach. We should better understand how real-time information supports customer value creation by imbedding the information into the lifetime value of products and services. The aim of this research was to build competitive advantage through B2B integration to support a real-time economy. For practitioners, this research created several tools and concepts to improve value activities, information logistics integration design and management and orchestration models. Based on the results, the companies were able to better understand the formulation of the digital business ecosystem and the importance of joint efforts in collaboration. However, the challenge of incorporating this new knowledge into strategic processes in a multi-stakeholder environment remains. This challenge has been noted, and new projects have been established in pursuit of a real-time economy.
Resumo:
This thesis presents an analysis of recently enacted Russian renewable energy policy based on capacity mechanism. Considering its novelty and poor coverage by academic literature, the aim of the thesis is to analyze capacity mechanism influence on investors’ decision-making process. The current research introduces a number of approaches to investment analysis. Firstly, classical financial model was built with Microsoft Excel® and crisp efficiency indicators such as net present value were determined. Secondly, sensitivity analysis was performed to understand different factors influence on project profitability. Thirdly, Datar-Mathews method was applied that by means of Monte Carlo simulation realized with Matlab Simulink®, disclosed all possible outcomes of investment project and enabled real option thinking. Fourthly, previous analysis was duplicated by fuzzy pay-off method with Microsoft Excel®. Finally, decision-making process under capacity mechanism was illustrated with decision tree. Capacity remuneration paid within 15 years is calculated individually for each RE project as variable annuity that guarantees a particular return on investment adjusted on changes in national interest rates. Analysis results indicate that capacity mechanism creates a real option to invest in renewable energy project by ensuring project profitability regardless of market conditions if project-internal factors are managed properly. The latter includes keeping capital expenditures within set limits, production performance higher than 75% of target indicators, and fulfilling localization requirement, implying producing equipment and services within the country. Occurrence of real option shapes decision-making process in the following way. Initially, investor should define appropriate location for a planned power plant where high production performance can be achieved, and lock in this location in case of competition. After, investor should wait until capital cost limit and localization requirement can be met, after that decision to invest can be made without any risk to project profitability. With respect to technology kind, investment into solar PV power plant is more attractive than into wind or small hydro power, since it has higher weighted net present value and lower standard deviation. However, it does not change decision-making strategy that remains the same for each technology type. Fuzzy pay-method proved its ability to disclose the same patterns of information as Monte Carlo simulation. Being effective in investment analysis under uncertainty and easy in use, it can be recommended as sufficient analytical tool to investors and researchers. Apart from described results, this thesis contributes to the academic literature by detailed description of capacity price calculation for renewable energy that was not available in English before. With respect to methodology novelty, such advanced approaches as Datar-Mathews method and fuzzy pay-off method are applied on the top of investment profitability model that incorporates capacity remuneration calculation as well. Comparison of effects of two different RE supporting schemes, namely Russian capacity mechanism and feed-in premium, contributes to policy comparative studies and exhibits useful inferences for researchers and policymakers. Limitations of this research are simplification of assumptions to country-average level that restricts our ability to analyze renewable energy investment region wise and existing limitation of the studying policy to the wholesale power market that leaves retail markets and remote areas without our attention, taking away medium and small investment into renewable energy from the research focus. Elimination of these limitations would allow creating the full picture of Russian renewable energy investment profile.
Resumo:
This thesis examines the suitability of VaR in foreign exchange rate risk management from the perspective of a European investor. The suitability of four different VaR models is evaluated in respect to have insight if VaR is a valuable tool in managing foreign exchange rate risk. The models evaluated are historical method, historical bootstrap method, variance-covariance method and Monte Carlo simulation. The data evaluated are divided into emerging and developed market currencies to have more intriguing analysis. The foreign exchange rate data in this thesis is from 31st January 2000 to 30th April 2014. The results show that the previously mentioned VaR models performance in foreign exchange risk management is not to be considered as a single tool in foreign exchange rate risk management. The variance-covariance method and Monte Carlo simulation performs poorest in both currency portfolios. Both historical methods performed better but should also be considered as an additional tool along with other more sophisticated analysis tools. A comparative study of VaR estimates and forward prices is also included in the thesis. The study reveals that regardless of the expensive hedging cost of emerging market currencies the risk captured by VaR is more expensive and thus FX forward hedging is recommended
Resumo:
The aim of this thesis is to propose a novel control method for teleoperated electrohydraulic servo systems that implements a reliable haptic sense between the human and manipulator interaction, and an ideal position control between the manipulator and the task environment interaction. The proposed method has the characteristics of a universal technique independent of the actual control algorithm and it can be applied with other suitable control methods as a real-time control strategy. The motivation to develop this control method is the necessity for a reliable real-time controller for teleoperated electrohydraulic servo systems that provides highly accurate position control based on joystick inputs with haptic capabilities. The contribution of the research is that the proposed control method combines a directed random search method and a real-time simulation to develop an intelligent controller in which each generation of parameters is tested on-line by the real-time simulator before being applied to the real process. The controller was evaluated on a hydraulic position servo system. The simulator of the hydraulic system was built based on Markov chain Monte Carlo (MCMC) method. A Particle Swarm Optimization algorithm combined with the foraging behavior of E. coli bacteria was utilized as the directed random search engine. The control strategy allows the operator to be plugged into the work environment dynamically and kinetically. This helps to ensure the system has haptic sense with high stability, without abstracting away the dynamics of the hydraulic system. The new control algorithm provides asymptotically exact tracking of both, the position and the contact force. In addition, this research proposes a novel method for re-calibration of multi-axis force/torque sensors. The method makes several improvements to traditional methods. It can be used without dismantling the sensor from its application and it requires smaller number of standard loads for calibration. It is also more cost efficient and faster in comparison to traditional calibration methods. The proposed method was developed in response to re-calibration issues with the force sensors utilized in teleoperated systems. The new approach aimed to avoid dismantling of the sensors from their applications for applying calibration. A major complication with many manipulators is the difficulty accessing them when they operate inside a non-accessible environment; especially if those environments are harsh; such as in radioactive areas. The proposed technique is based on design of experiment methodology. It has been successfully applied to different force/torque sensors and this research presents experimental validation of use of the calibration method with one of the force sensors which method has been applied to.
Resumo:
Euclidean distance matrix analysis (EDMA) methods are used to distinguish whether or not significant difference exists between conformational samples of antibody complementarity determining region (CDR) loops, isolated LI loop and LI in three-loop assembly (LI, L3 and H3) obtained from Monte Carlo simulation. After the significant difference is detected, the specific inter-Ca distance which contributes to the difference is identified using EDMA.The estimated and improved mean forms of the conformational samples of isolated LI loop and LI loop in three-loop assembly, CDR loops of antibody binding site, are described using EDMA and distance geometry (DGEOM). To the best of our knowledge, it is the first time the EDMA methods are used to analyze conformational samples of molecules obtained from Monte Carlo simulations. Therefore, validations of the EDMA methods using both positive control and negative control tests for the conformational samples of isolated LI loop and LI in three-loop assembly must be done. The EDMA-I bootstrap null hypothesis tests showed false positive results for the comparison of six samples of the isolated LI loop and true positive results for comparison of conformational samples of isolated LI loop and LI in three-loop assembly. The bootstrap confidence interval tests revealed true negative results for comparisons of six samples of the isolated LI loop, and false negative results for the conformational comparisons between isolated LI loop and LI in three-loop assembly. Different conformational sample sizes are further explored by combining the samples of isolated LI loop to increase the sample size, or by clustering the sample using self-organizing map (SOM) to narrow the conformational distribution of the samples being comparedmolecular conformations. However, there is no improvement made for both bootstrap null hypothesis and confidence interval tests. These results show that more work is required before EDMA methods can be used reliably as a method for comparison of samples obtained by Monte Carlo simulations.
Resumo:
A general derivation of the anharmonic coefficients for a periodic lattice invoking the special case of the central force interaction is presented. All of the contributions to mean square displacement (MSD) to order 14 perturbation theory are enumerated. A direct correspondance is found between the high temperature limit MSD and high temperature limit free energy contributions up to and including 0(14). This correspondance follows from the detailed derivation of some of the contributions to MSD. Numerical results are obtained for all the MSD contributions to 0(14) using the Lennard-Jones potential for the lattice constants and temperatures for which the Monte Carlo results were calculated by Heiser, Shukla and Cowley. The Peierls approximation is also employed in order to simplify the numerical evaluation of the MSD contributions. The numerical results indicate the convergence of the perturbation expansion up to 75% of the melting temperature of the solid (TM) for the exact calculation; however, a better agreement with the Monte Carlo results is not obtained when the total of all 14 contributions is added to the 12 perturbation theory results. Using Peierls approximation the expansion converges up to 45% of TM• The MSD contributions arising in the Green's function method of Shukla and Hubschle are derived and enumerated up to and including 0(18). The total MSD from these selected contributions is in excellent agreement with their results at all temperatures. Theoretical values of the recoilless fraction for krypton are calculated from the MSD contributions for both the Lennard-Jones and Aziz potentials. The agreement with experimental values is quite good.
Resumo:
In this paper, we develop finite-sample inference procedures for stationary and nonstationary autoregressive (AR) models. The method is based on special properties of Markov processes and a split-sample technique. The results on Markovian processes (intercalary independence and truncation) only require the existence of conditional densities. They are proved for possibly nonstationary and/or non-Gaussian multivariate Markov processes. In the context of a linear regression model with AR(1) errors, we show how these results can be used to simplify the distributional properties of the model by conditioning a subset of the data on the remaining observations. This transformation leads to a new model which has the form of a two-sided autoregression to which standard classical linear regression inference techniques can be applied. We show how to derive tests and confidence sets for the mean and/or autoregressive parameters of the model. We also develop a test on the order of an autoregression. We show that a combination of subsample-based inferences can improve the performance of the procedure. An application to U.S. domestic investment data illustrates the method.