Indirect likelihood inference (revised)
Contribuinte(s) |
Universitat Autònoma de Barcelona. Unitat de Fonaments de l'Anàlisi Econòmica Institut d'Anàlisi Econòmica |
---|---|
Data(s) |
2013
|
Resumo |
Standard indirect Inference (II) estimators take a given finite-dimensional statistic, Z_{n} , and then estimate the parameters by matching the sample statistic with the model-implied population moment. We here propose a novel estimation method that utilizes all available information contained in the distribution of Z_{n} , not just its first moment. This is done by computing the likelihood of Z_{n}, and then estimating the parameters by either maximizing the likelihood or computing the posterior mean for a given prior of the parameters. These are referred to as the maximum indirect likelihood (MIL) and Bayesian Indirect Likelihood (BIL) estimators, respectively. We show that the IL estimators are first-order equivalent to the corresponding moment-based II estimator that employs the optimal weighting matrix. However, due to higher-order features of Z_{n} , the IL estimators are higher order efficient relative to the standard II estimator. The likelihood of Z_{n} will in general be unknown and so simulated versions of IL estimators are developed. Monte Carlo results for a structural auction model and a DSGE model show that the proposed estimators indeed have attractive finite sample properties. |
Formato |
32 p. |
Identificador | |
Idioma(s) |
eng |
Publicador |
Universitat Autònoma de Barcelona. Unitat de Fonaments de l'Anàlisi Econòmica |
Relação |
Working papers;931.13 |
Direitos |
info:eu-repo/semantics/openAccess L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
Fonte |
RECERCAT (Dipòsit de la Recerca de Catalunya) |
Palavras-Chave | #Approximate bayesian computation #Indirect inference #Maximum-likelihood #Simulation-based methods #Inferència #33 - Economia |
Tipo |
info:eu-repo/semantics/workingPaper |