Indirect likelihood inference (revised)


Autoria(s): Creel, Michael; Kristensen, Dennis
Contribuinte(s)

Universitat Autònoma de Barcelona. Unitat de Fonaments de l'Anàlisi Econòmica

Institut d'Anàlisi Econòmica

Data(s)

2013

Resumo

Standard indirect Inference (II) estimators take a given finite-dimensional statistic, Z_{n} , and then estimate the parameters by matching the sample statistic with the model-implied population moment. We here propose a novel estimation method that utilizes all available information contained in the distribution of Z_{n} , not just its first moment. This is done by computing the likelihood of Z_{n}, and then estimating the parameters by either maximizing the likelihood or computing the posterior mean for a given prior of the parameters. These are referred to as the maximum indirect likelihood (MIL) and Bayesian Indirect Likelihood (BIL) estimators, respectively. We show that the IL estimators are first-order equivalent to the corresponding moment-based II estimator that employs the optimal weighting matrix. However, due to higher-order features of Z_{n} , the IL estimators are higher order efficient relative to the standard II estimator. The likelihood of Z_{n} will in general be unknown and so simulated versions of IL estimators are developed. Monte Carlo results for a structural auction model and a DSGE model show that the proposed estimators indeed have attractive finite sample properties.

Formato

32 p.

Identificador

http://hdl.handle.net/2072/250491

Idioma(s)

eng

Publicador

Universitat Autònoma de Barcelona. Unitat de Fonaments de l'Anàlisi Econòmica

Relação

Working papers;931.13

Direitos

info:eu-repo/semantics/openAccess

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Fonte

RECERCAT (Dipòsit de la Recerca de Catalunya)

Palavras-Chave #Approximate bayesian computation #Indirect inference #Maximum-likelihood #Simulation-based methods #Inferència #33 - Economia
Tipo

info:eu-repo/semantics/workingPaper