939 resultados para Chaotic diffusion
Resumo:
Object selection refers to the mechanism of extracting objects of interest while ignoring other objects and background in a given visual scene. It is a fundamental issue for many computer vision and image analysis techniques and it is still a challenging task to artificial Visual systems. Chaotic phase synchronization takes place in cases involving almost identical dynamical systems and it means that the phase difference between the systems is kept bounded over the time, while their amplitudes remain chaotic and may be uncorrelated. Instead of complete synchronization, phase synchronization is believed to be a mechanism for neural integration in brain. In this paper, an object selection model is proposed. Oscillators in the network representing the salient object in a given scene are phase synchronized, while no phase synchronization occurs for background objects. In this way, the salient object can be extracted. In this model, a shift mechanism is also introduced to change attention from one object to another. Computer simulations show that the model produces some results similar to those observed in natural vision systems.
Resumo:
Chaotic synchronization has been discovered to be an important property of neural activities, which in turn has encouraged many researchers to develop chaotic neural networks for scene and data analysis. In this paper, we study the synchronization role of coupled chaotic oscillators in networks of general topology. Specifically, a rigorous proof is presented to show that a large number of oscillators with arbitrary geometrical connections can be synchronized by providing a sufficiently strong coupling strength. Moreover, the results presented in this paper not only are valid to a wide class of chaotic oscillators, but also cover the parameter mismatch case. Finally, we show how the obtained result can be applied to construct an oscillatory network for scene segmentation.
Resumo:
Synchronization and chaos play important roles in neural activities and have been applied in oscillatory correlation modeling for scene and data analysis. Although it is an extensively studied topic, there are still few results regarding synchrony in locally coupled systems. In this paper we give a rigorous proof to show that large numbers of coupled chaotic oscillators with parameter mismatch in a 2D lattice can be synchronized by providing a sufficiently large coupling strength. We demonstrate how the obtained result can be applied to construct an oscillatory network for scene segmentation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The transition to turbulence (spatio-temporal chaos) in a wide class of spatially extended dynamical system is due to the loss of transversal stability of a chaotic attractor lying on a homogeneous manifold (in the Fourier phase space of the system) causing spatial mode excitation Since the latter manifests as intermittent spikes this has been called a bubbling transition We present numerical evidences that this transition occurs due to the so called blowout bifurcation whereby the attractor as a whole loses transversal stability and becomes a chaotic saddle We used a nonlinear three-wave interacting model with spatial diffusion as an example of this transition (C) 2010 Elsevier B V All rights reserved
Resumo:
For tokamak models using simplified geometries and reversed shear plasma profiles, we have numerically investigated how the onset of Lagrangian chaos at the plasma edge may affect the plasma confinement in two distinct but closely related problems. Firstly, we have considered the motion of particles in drift waves in the presence of an equilibrium radial electric field with shear. We have shown that the radial particle transport caused by this motion is selective in phase space, being determined by the resonant drift waves and depending on the parameters of both the resonant waves and the electric field profile. Moreover, we have shown that an additional transport barrier may be created at the plasma edge by increasing the electric field. In the second place, we have studied escape patterns and magnetic footprints of chaotic magnetic field lines in the region near a tokamak wall, when there are resonant modes due to the action of an ergodic magnetic limiter. A non-monotonic safety factor profile has been used in the analysis of field line topology in a region of negative magnetic shear. We have observed that, if internal modes are perturbed, the distributions of field line connection lengths and magnetic footprints exhibit spatially localized escape channels. For typical physical parameters of a fusion plasma, the two Lagrangian chaotic processes considered in this work can be effective in usual conditions so as to influence plasma confinement. The reversed shear effects discussed in this work may also contribute to evaluate the transport barrier relevance in advanced confinement scenarios in future tokamak experiments.
Resumo:
We show, by using a numerical analysis, that the dynamic toward equilibrium for an electrolytic cell subject to a step-like external electric field is a multirelaxation process when the diffusion coefficients of positive and negative ions are different. By assuming that the diffusion coefficient of positive ions is constant, we observe that the number of involved relaxation processes increases when the diffusion coefficient of the negative ions diminishes. Furthermore, two of the relaxation times depend nonmonotonically on the ratio of the diffusion coefficients. This result is unexpected, because the ionic drift velocity, by means of which the ions move to reach the equilibrium distribution, increases with increasing ionic mobility.
Resumo:
In this paper, we propose a new method of measuring the very slow paramagnetic ion diffusion coefficient using a commercial high-resolution spectrometer. If there are distinct paramagnetic ions influencing the hydrogen nuclear magnetic relaxation time differently, their diffusion coefficients can be measured separately. A cylindrical phantom filled with Fricke xylenol gel solution and irradiated with gamma rays was used to validate the method. The Fricke xylenol gel solution was prepared with 270 Bloom porcine gelatin, the phantom was irradiated with gamma rays originated from a (60)Co source and a high-resolution 200 MHz nuclear magnetic resonance (NMR) spectrometer was used to obtain the phantom (1)H profile in the presence of a linear magnetic field gradient. By observing the temporal evolution of the phantom NMR profile, an apparent ferric ion diffusion coefficient of 0.50 mu m(2)/ms due to ferric ions diffusion was obtained. In any medical process where the ionizing radiation is used, the dose planning and the dose delivery are the key elements for the patient safety and success of treatment. These points become even more important in modern conformal radio therapy techniques, such as stereotactic radiosurgery, where the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Several methods have been proposed to obtain the three-dimensional (3-D) dose distribution. Recently, we proposed an alternative method for the 3-D radiation dose mapping, where the ionizing radiation modifies the local relative concentration of Fe(2+)/Fe(3+) in a phantom containing Fricke gel and this variation is associated to the MR image intensity. The smearing of the intensity gradient is proportional to the diffusion coefficient of the Fe(3+) and Fe(2+) in the phantom. There are several methods for measurement of the ionic diffusion using NMR, however, they are applicable when the diffusion is not very slow.
Resumo:
In a 2D parameter space, by using nine experimental time series of a Clitia`s circuit, we characterized three codimension-1 chaotic fibers parallel to a period-3 window. To show the local preservation of the properties of the chaotic attractors in each fiber, we applied the closed return technique and two distinct topological methods. With the first topological method we calculated the linking, numbers in the sets of unstable periodic orbits, and with the second one we obtained the symbolic planes and the topological entropies by applying symbolic dynamic analysis. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
In this Letter we deal with a nonlinear Schrodinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Here we show that the chaotic perturbation is more effective in destroying the soliton behavior, when compared with random or nonperiodic perturbation. For a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein condensates and their collective excitations and transport. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We study the validity of the Born-Oppenheimer approximation in chaotic dynamics. Using numerical solutions of autonomous Fermi accelerators. we show that the general adiabatic conditions can be interpreted as the narrowness of the chaotic region in phase space. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Objective: Abnormalities in the anterior interhemispheric connections provided by the corpus callosum (CC) have long been implicated in bipolar disorder (BID). In this study, we used complementary diffusion tensor imaging methods to study the structural integrity of the CC and localization of potential abnormalities in BD. Methods: Subjects included 33 participants with BID and 40 healthy comparison participants. Fractional anisotropy (FA) measures were compared between groups with region of interest (ROD methods to investigate the anterior, middle, and posterior CC and voxel-based methods to further localize abnormalities. Results: In ROI-based analyses, FA was significantly decreased in the anterior and middle CC in the BID group (p <.05). Voxel-based analyses similarly localized group differences to the genu, rostral body, and anterior midbody of CC (p <.05, corrected). Conclusion: The findings demonstrate abnormalities in the structural integrity of the anterior CC in BID that might contribute to altered interhemispheric connectivity in this disorder.
Abnormal anterior cingulum integrity in bipolar disorder determined through diffusion tensor imaging
Resumo:
Background Convergent evidence implicates white matter abnormalities in bipolar disorder. The cingulum is an important candidate structure for study in bipolar disorder as it provides substantial white matter connections within the corticolimbic neural system that subserves emotional regulation involved in the disorder. Aims To test the hypothesis that bipolar disorder is associated with abnormal white matter integrity in the cingulum. Method Fractional anisotropy in the anterior and posterior cingulum was compared between 42 participants with bipolar disorder and 42 healthy participants using diffusion tensor imaging. Results Fractional anisotropy was significantly decreased in the anterior cingulum in the bipolar disorder group compared with the healthy group (P=0.003); however, fractional anisotropy in the posterior cingulum did not differ significantly between groups. Conclusions Our findings demonstrate abnormalities in the structural integrity of the anterior cingulum in bipolar disorder. They extend evidence that supports involvement of the neural system comprising the anterior cingulate cortex and its corticolimbic gray matter connection sites in bipolar disorder to implicate abnormalities in the white matter connections within the system provided by the cingulum.
Resumo:
Contrary to expectations derived from preclinical studies of the effects of stress, and imaging studies of adults with posttraumatic stress disorder (PTSD), there is no evidence of hippocampus atrophy in children with PTSD. Multiple pediatric studies have reported reductions in the corpus callosum - the primary white matter tract in the brain. Consequently, in the present study, diffusion tensor imaging was used to assess white matter integrity in the corpus callosum in 17 maltreated children with PTSD and 15 demographically matched normal controls. Children with PTSD had reduced fractional anisotropy in the medial and posterior corpus, a region which contains interhemispheric projections from brain structures involved in circuits that mediate the processing of emotional stimuli and various memory functions - core disturbances associated with a history of trauma. Further exploration of the effects of stress on the corpus callosum and white matter development appears a promising strategy to better understand the pathophysiology of PTSD in children. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The goal of this paper is to present an approximation scheme for a reaction-diffusion equation with finite delay, which has been used as a model to study the evolution of a population with density distribution u, in such a way that the resulting finite dimensional ordinary differential system contains the same asymptotic dynamics as the reaction-diffusion equation.
Resumo:
We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem. (C) 2008 Elsevier Inc. All rights reserved.