Blowout bifurcation and spatial mode excitation in the bubbling transition to turbulence
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2011
|
Resumo |
The transition to turbulence (spatio-temporal chaos) in a wide class of spatially extended dynamical system is due to the loss of transversal stability of a chaotic attractor lying on a homogeneous manifold (in the Fourier phase space of the system) causing spatial mode excitation Since the latter manifests as intermittent spikes this has been called a bubbling transition We present numerical evidences that this transition occurs due to the so called blowout bifurcation whereby the attractor as a whole loses transversal stability and becomes a chaotic saddle We used a nonlinear three-wave interacting model with spatial diffusion as an example of this transition (C) 2010 Elsevier B V All rights reserved CNEN (Brazilian Fusion Network) Comissão Nacional de Energia Nuclear (CNEN) CNPq Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) CAPES FAPESP Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) Fundação Araucária Fundacao Araucaria (Brazilian Government Agencies) |
Identificador |
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, v.390, n.2, p.365-373, 2011 0378-4371 http://producao.usp.br/handle/BDPI/29016 10.1016/j.physa.2010.09.037 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Physica A-statistical Mechanics and Its Applications |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #Wave turbulence #Spatial mode excitation #Three wave interaction #COUPLED MAP LATTICES #ATTRACTORS #DYNAMICS #CHAOS #SYNCHRONIZATION #GENERATION #SYSTEMS #Physics, Multidisciplinary |
Tipo |
article original article publishedVersion |