937 resultados para Caputo Fractional Derivatives
Resumo:
Reaction of tin(II) chloride with Li(CPhCPh2) at –78 °C in diethyl ether–hexane–tetrahydrofuran affords a deep red solution whose colour fades on warming, and which we believe contains the (unstable) first dialkenyltin(II) species. The latter survives long enough at low temperatures to undergo intermolecular oxidative addition, and one such adduct leads ultimately to the formation of Sn(CPhCPh2)3Bun, which has been fully characterised including a crystal and molecular structure study. The mechanism of formation of the final product has been examined and results are reported.
Resumo:
The DNA G-qadruplexes are one of the targets being actively explored for anti-cancer therapy by inhibiting them through small molecules. This computational study was conducted to predict the binding strengths and orientations of a set of novel dimethyl-amino-ethyl-acridine (DACA) analogues that are designed and synthesized in our laboratory, but did not diffract in Synchrotron light.Thecrystal structure of DNA G-Quadruplex(TGGGGT)4(PDB: 1O0K) was used as target for their binding properties in our studies.We used both the force field (FF) and QM/MM derived atomic charge schemes simultaneously for comparing the predictions of drug binding modes and their energetics. This study evaluates the comparative performance of fixed point charge based Glide XP docking and the quantum polarized ligand docking schemes. These results will provide insights on the effects of including or ignoring the drug-receptor interfacial polarization events in molecular docking simulations, which in turn, will aid the rational selection of computational methods at different levels of theory in future drug design programs. Plenty of molecular modelling tools and methods currently exist for modelling drug-receptor or protein-protein, or DNA-protein interactionssat different levels of complexities.Yet, the capasity of such tools to describevarious physico-chemical propertiesmore accuratelyis the next step ahead in currentresearch.Especially, the usage of most accurate methods in quantum mechanics(QM) is severely restricted by theirtedious nature. Though the usage of massively parallel super computing environments resulted in a tremendous improvement in molecular mechanics (MM) calculations like molecular dynamics,they are still capable of dealing with only a couple of tens to hundreds of atoms for QM methods. One such efficient strategy that utilizes thepowers of both MM and QM are the QM/MM hybrid methods. Lately, attempts have been directed towards the goal of deploying several different QM methods for betterment of force field based simulations, but with practical restrictions in place. One of such methods utilizes the inclusion of charge polarization events at the drug-receptor interface, that is not explicitly present in the MM FF.
Resumo:
The aim of this study was to evaluate the ability of an Escherichia coli with the multiple antibiotic resistance (MAR) phenotype to withstand the stresses of slaughter compared to an isogenic progenitor strain. A wild type E. coli isolate (345-2RifC) of porcine origin was used to derive 3 isogenic MAR mutants. Escherichia coli 345-2RifC and its MAR derivatives were inoculated into separate groups of pigs. Once colonisation was established, the pigs were slaughtered and persistence of the E. coli strains in the abattoir environment and on the pig carcasses was monitored and compared. No significant difference (P>0.05) was detected between the shedding of the different E. coli strains from the live pigs. Both the parent strain and its MAR derivatives persisted in the abattoir environment, however the parent strain was recovered from 6 of the 13 locations sampled while the MAR derivatives were recovered from 11 of 13 and the number of MAR E. coil recovered was 10-fold higher than the parent strain at half of the locations. The parent strain was not recovered from any of the 6 chilled carcasses whereas the MAR derivatives were recovered from 3 out of 5 (P<0.001). This study demonstrates that the expression of MAR in 345-2RifC increased its ability to survive the stresses of the slaughter and chilling processes. Therefore in E. coli, MAR can give a selective advantage, compared to non-MAR strains, for persistence on chilled carcasses thereby facilitating transit of these strains through the food chain. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A semi-quantitative cloacal-swab method was used as an indirect measure of caecal colonisation of one-day old and five-day old chicks after oral dosing with wild-type Salmonella enterica serovar Enteritidis PT4 and,genetically defined isogenic derivatives lacking the ability to elaborate flagella or fimbriae. Birds of both ages were readily and persistently colonised by all strains although there war a decline in shedding by the older birds after about 21 days. There were no significant differences in shedding of wild-type or mutants in single-dose experiments. In competition experiments, in which five-day old birds were dosed orally with wild-type and mutants together, shedding of non-motile derivatives was significantly lower than wild-type, At 35 days post infection, birds were sacrificed and direct counts of mutants and wild-type from each caecum were determined. Whilst there appeared to be poor correlation between direct counts and the indirect swab method, the overall trends shown by these methods of assessment indicated that flagella and not fimbriae were important in caecal colonisation in these models. Crown Copyright (C) 1999 Published by Elsevier Science B.V.
Resumo:
An incidence matrix analysis is used to model a three-dimensional network consisting of resistive and capacitive elements distributed across several interconnected layers. A systematic methodology for deriving a descriptor representation of the network with random allocation of the resistors and capacitors is proposed. Using a transformation of the descriptor representation into standard state-space form, amplitude and phase admittance responses of three-dimensional random RC networks are obtained. Such networks display an emergent behavior with a characteristic Jonscher-like response over a wide range of frequencies. A model approximation study of these networks is performed to infer the admittance response using integral and fractional order models. It was found that a fractional order model with only seven parameters can accurately describe the responses of networks composed of more than 70 nodes and 200 branches with 100 resistors and 100 capacitors. The proposed analysis can be used to model charge migration in amorphous materials, which may be associated to specific macroscopic or microscopic scale fractal geometrical structures in composites displaying a viscoelastic electromechanical response, as well as to model the collective responses of processes governed by random events described using statistical mechanics.
Resumo:
The relative contributions of five variables (Stereoscopy, screen size, field of view, level of realism and level of detail) of virtual reality systems on spatial comprehension and presence are evaluated here. Using a variable-centered approach instead of an object-centric view as its theoretical basis, the contributions of these five variables and their two-way interactions are estimated through a 25-1 fractional factorial experiment (screening design) of resolution V with 84 subjects. The experiment design, procedure, measures used, creation of scales and indices, results of statistical analysis, their meaning and agenda for future research are elaborated.
Resumo:
In the present paper we study the approximation of functions with bounded mixed derivatives by sparse tensor product polynomials in positive order tensor product Sobolev spaces. We introduce a new sparse polynomial approximation operator which exhibits optimal convergence properties in L2 and tensorized View the MathML source simultaneously on a standard k-dimensional cube. In the special case k=2 the suggested approximation operator is also optimal in L2 and tensorized H1 (without essential boundary conditions). This allows to construct an optimal sparse p-version FEM with sparse piecewise continuous polynomial splines, reducing the number of unknowns from O(p2), needed for the full tensor product computation, to View the MathML source, required for the suggested sparse technique, preserving the same optimal convergence rate in terms of p. We apply this result to an elliptic differential equation and an elliptic integral equation with random loading and compute the covariances of the solutions with View the MathML source unknowns. Several numerical examples support the theoretical estimates.
Resumo:
This paper reviews extant research on commodity price dynamics and commodity derivatives pricing models. In the first half, we provide an overview of stylized facts of commodity price behavior that have been explored and documented in the theoretical and empirical literature. In the second half, we review existing derivatives pricing models and discuss how the peculiarities of commodity markets have been integrated in these models. We conclude the paper with a brief outlook on important research questions that need to be addressed in the future.
Resumo:
We discuss the modelling of dielectric responses of amorphous biological samples. Such samples are commonly encountered in impedance spectroscopy studies as well as in UV, IR, optical and THz transient spectroscopy experiments and in pump-probe studies. In many occasions, the samples may display quenched absorption bands. A systems identification framework may be developed to provide parsimonious representations of such responses. To achieve this, it is appropriate to augment the standard models found in the identification literature to incorporate fractional order dynamics. Extensions of models using the forward shift operator, state space models as well as their non-linear Hammerstein-Wiener counterpart models are highlighted. We also discuss the need to extend the theory of electromagnetically excited networks which can account for fractional order behaviour in the non-linear regime by incorporating nonlinear elements to account for the observed non-linearities. The proposed approach leads to the development of a range of new chemometrics tools for biomedical data analysis and classification.
Resumo:
The study examines the impact of liquidity risk on freight derivatives returns. The Amihud liquidity ratio and bid–ask spreads are utilized to assess the existence of liquidity risk in the freight derivatives market. Other macroeconomic variables are used to control for market risk. Results indicate that liquidity risk is priced and both liquidity measures have a significant role in determining freight derivatives returns. Consistent with expectations, both liquidity measures are found to have positive and significant effects on the returns of freight derivatives. The results have important implications for modeling freight derivatives, and consequently, for trading and risk management purposes.
Resumo:
Neural crest-derived stem cells (NCSCs) from the embryonic peripheral nervous system (PNS) can be reprogrammed in neurosphere (NS) culture to rNCSCs that produce central nervous system (CNS) progeny, including myelinating oligodendrocytes. Using global gene expression analysis we now demonstrate that rNCSCs completely lose their previous PNS characteristics and acquire the identity of neural stem cells derived from embryonic spinal cord. Reprogramming proceeds rapidly and results in a homogenous population of Olig2-, Sox3-, and Lex-positive CNS stem cells. Low-level expression of pluripotency inducing genes Oct4, Nanog, and Klf4 argues against a transient pluripotent state during reprogramming. The acquisition of CNS properties is prevented in the presence of BMP4 (BMP NCSCs) as shown by marker gene expression and the potential to produce PNS neurons and glia. In addition, genes characteristic for mesenchymal and perivascular progenitors are expressed, which suggests that BMP NCSCs are directed toward a pericyte progenitor/mesenchymal stem cell (MSC) fate. Adult NCSCs from mouse palate, an easily accessible source of adult NCSCs, display strikingly similar properties. They do not generate cells with CNS characteristics but lose the neural crest markers Sox10 and p75 and produce MSC-like cells. These findings show that embryonic NCSCs acquire a full CNS identity in NS culture. In contrast, MSC-like cells are generated from BMP NCSCs and pNCSCs, which reveals that postmigratory NCSCs are a source for MSC-like cells up to the adult stage.
Resumo:
The formation of new blood vessels from the pre-existing vasculature (angiogenesis) is a crucial stage in cancer progression and, indeed, angiogenesis inhibitors are now used as anticancer agents, clinically. Here we have explored the potential of flavonoid derivatives as antiangiogenic agents. Specifically, we have synthesised methoxy and 4-thio derivatives of the natural flavones quercetin and luteolin, two of which (4-thio quercetin and 4-thio luteolin) had never been previously reported. Seven of these compounds showed significant (P<0.05) antiangiogenic activity in an in vitro scratch assay. Their activity ranged from an 86% inhibition of the vascular endothelium growth factor (VEGF)-stimulated migration (observed for methoxyquercetin at 10 µM and for luteolin at 1 µM) to a 36% inhibition (for thiomethoxy quercetin at 10 µM). Western blotting studies showed that most (4 out of 7) compounds inhibited phosphorylation of the VEGF receptor-2 (VEGFR2), suggesting that the antiangiogenic activity was due to an interference with the VEGF/VEGFR2 pathway. Molecular modelling studies looking at the affinity of our compounds towards VEGFR and/or VEGF confirmed this hypothesis, and indeed the compound with the highest antiangiogenic activity (methoxyquercetin) showed the highest affinity towards VEGFR and VEGF. As reports from others have suggested that structurally similar compounds can elicit biological responses via a non-specific, promiscuous membrane perturbation, potential interactions of the active compounds with a model lipid bilayer were assessed via DSC. Luteolin and its derivatives did not perturb the model membrane even at concentrations 10 times higher than the biologically active concentration and only subtle interactions were observed for quercetin and its derivatives. Finally, cytotoxicity assessment of these flavonoid derivatives against MCF-7 breast cancer cells demonstrated also a direct anticancer activity albeit at generally higher concentrations than those required for an antiangiogenic effect (10 fold higher for the methoxy analogues). Taken together these results show promise for flavonoid derivatives as antiangiogenic agents.
Resumo:
Functional advantages of probiotics combined with interesting composition of oat were considered as an alternative to dairy products. In this study, fermentation of oat milk with Lactobacillus reuteri and Streptococcus thermophilus was analysed to develop a new probiotic product. Central composite design with response surface methodology was used to analyse the effect of different factors (glucose, fructose, inulin and starters) on the probiotic population in the product. Optimised formulation was characterised throughout storage time at 4 ℃ in terms of pH, acidity, β-glucan and oligosaccharides contents, colour and rheological behaviour. All formulations studied were adequate to produce fermented foods and minimum dose of each factor was considered as optimum. The selected formulation allowed starters survival above 107/cfu ml to be considered as a functional food and was maintained during the 28 days controlled. β-glucans remained in the final product with a positive effect on viscosity. Therefore, a new probiotic non-dairy milk was successfully developed in which high probiotic survivals were assured throughout the typical yoghurt-like shelf life.