1000 resultados para COMPETING OXYGEN TRANSFERS
Resumo:
A tricyclic core structure related to gelsemine was synthesized from an oxabicyclo[3.2.1]octanone by a three-step bridge swapping strategy involving elimination of the bridging ether oxygen and intramolecular Michael addition of a tethered cyanoacetamide unit.
Resumo:
Agonistic interactions between animals are often settled by the use of repeated signals which advertise the resource-holding potential of the sender. According to the sequential assessment game this repetition increases the accuracy with which receivers may assess the signal, but under the cumulative assessment model the repeated performances accumulate to give a signal of stamina. These models may be distinguished by the temporal pattern of signalling they predict and by the decision rules used by the contestants. Hermit crabs engage in shell fights over possession of the gastropod shells that they inhabit. During these interactions the two roles of signaller and receiver may be examined separately because they are fixed for the duration of the encounter. Attackers rap their shell against that of the defender in a series of bouts whereas defenders remain tightly withdrawn into their shells for the duration of the contest. At the end of a fight the attacker may evict the defender from its shell or decide to give up without first effecting an eviction; the decision for defenders is either to maintain a grip on its shell or to release the shell and allow itself to be evicted. We manipulated fatigue levels separately for attackers and defenders, by varying the oxygen concentration of the water that they are held in prior to fighting, and examined the effects that this has on the likelihood of each decision and on the temporal pattern of rapping. We show that the vigour of rapping and the likelihood of eviction are reduced when the attacker is subjected to low oxygen but that this treatment has no effect on rates of eviction when applied to defenders. We conclude that defenders compare the vigour of rapping with an absolute threshold rather than with a relative threshold when making their decision. The data are compatible with the cumulative assessment model and with the idea that shell rapping signals the stamina of attackers, but do not fit the predictions of the sequential assessment game.
Resumo:
Atomic oxygen formation in a radio-frequency driven micro-atmospheric pressure plasma jet is investigated using both advanced optical diagnostics and numerical simulations of the dynamic plasma chemistry. Laser spectroscopic measurements of absolute densities of ground state atomic oxygen reveal steep gradients at the interface between the plasma core and the effluent region. Spatial profiles resolving the interelectrode gap within the core plasma indicate that volume processes dominate over surface reactions. Details of the production and destruction processes are investigated in numerical simulations benchmarked by phase-resolved optical emission spectroscopy. The main production mechanisms are electron induced and hence most efficient in the vicinity of the plasma boundary sheath, where electrons are energized. The destruction is driven through chemical heavy particle reactions. The resulting spatial profile of atomic oxygen is relatively flat. The power dependence of the atomic oxygen density obtained by the numerical simulation is in very good agreement with the laser spectroscopic measurements.
Resumo:
For S-nitrosothiols and peroxynitrite to interfere with the activity of mitochondrial complex I, prior transition of the enzyme from its active (A) to its deactive, dormant (D) state is necessary. We now demonstrate accumulation of the D-form of complex I in human epithelial kidney cells after prolonged hypoxia. Upon reoxygenation after hypoxia there was an initial delay in the return of the respiration rate to normal. This was due to the accumulation of the D-form and its slow, substrate-dependent reconversion to the A-form. Reconversion to the A-form could be prevented by prolonged incubation with endogenously generated NO. We propose that the hypoxic transition from the A-form to the D-form of complex I may be protective, because it would act to reduce the electron burst and the formation of free radicals during reoxygenation. However, this may become an early pathophysiological event when NO-dependent formation of S-nitrosothiols or peroxynitrite structurally modifies complex I in its D-form and impedes its return to the active state. These observations provide a mechanism to account for the severe cell injury that follows hypoxia and reoxygenation when accompanied by NO generation.