891 resultados para 2ND ORDER PERIODIC PROBLEMS
Resumo:
As the popularity of video as an information medium rises, the amount of video content that we produce and archive keeps growing. This creates a demand for shorter representations of videos in order to assist the task of video retrieval. The traditional solution is to let humans watch these videos and write textual summaries based on what they saw. This summarisation process, however, is time-consuming. Moreover, a lot of useful audio-visual information contained in the original video can be lost. Video summarisation aims to turn a full-length video into a more concise version that preserves as much information as possible. The problem of video summarisation is to minimise the trade-off between how concise and how representative a summary is. There are also usability concerns that need to be addressed in a video summarisation scheme. To solve these problems, this research aims to create an automatic video summarisation framework that combines and improves on existing video summarisation techniques, with the focus on practicality and user satisfaction. We also investigate the need for different summarisation strategies in different kinds of videos, for example news, sports, or TV series. Finally, we develop a video summarisation system based on the framework, which is validated by subjective and objective evaluation. The evaluation results shows that the proposed framework is effective for creating video skims, producing high user satisfaction rate and having reasonably low computing requirement. We also demonstrate that the techniques presented in this research can be used for visualising video summaries in the form web pages showing various useful information, both from the video itself and from external sources.
Resumo:
Epilepsy is characterized by the spontaneous and seemingly unforeseeable occurrence of seizures, during which the perception or behavior of patients is disturbed. An automatic system that detects seizure onsets would allow patients or the people near them to take appropriate precautions, and could provide more insight into this phenomenon. Various methods have been proposed to predict the onset of seizures based on EEG recordings. The use of nonlinear features motivated by the higher order spectra (HOS) has been reported to be a promising approach to differentiate between normal, background (pre-ictal) and epileptic EEG signals. In this work, we made a comparative study of the performance of Gaussian mixture model (GMM) and Support Vector Machine (SVM) classifiers using the features derived from HOS and from the power spectrum. Results show that the selected HOS based features achieve 93.11% classification accuracy compared to 88.78% with features derived from the power spectrum for a GMM classifier. The SVM classifier achieves an improvement from 86.89% with features based on the power spectrum to 92.56% with features based on the bispectrum.
Resumo:
A new algorithm for extracting features from images for object recognition is described. The algorithm uses higher order spectra to provide desirable invariance properties, to provide noise immunity, and to incorporate nonlinearity into the feature extraction procedure thereby allowing the use of simple classifiers. An image can be reduced to a set of 1D functions via the Radon transform, or alternatively, the Fourier transform of each 1D projection can be obtained from a radial slice of the 2D Fourier transform of the image according to the Fourier slice theorem. A triple product of Fourier coefficients, referred to as the deterministic bispectrum, is computed for each 1D function and is integrated along radial lines in bifrequency space. Phases of the integrated bispectra are shown to be translation- and scale-invariant. Rotation invariance is achieved by a regrouping of these invariants at a constant radius followed by a second stage of invariant extraction. Rotation invariance is thus converted to translation invariance in the second step. Results using synthetic and actual images show that isolated, compact clusters are formed in feature space. These clusters are linearly separable, indicating that the nonlinearity required in the mapping from the input space to the classification space is incorporated well into the feature extraction stage. The use of higher order spectra results in good noise immunity, as verified with synthetic and real images. Classification of images using the higher order spectra-based algorithm compares favorably to classification using the method of moment invariants
Resumo:
An approach to pattern recognition using invariant parameters based on higher-order spectra is presented. In particular, bispectral invariants are used to classify one-dimensional shapes. The bispectrum, which is translation invariant, is integrated along straight lines passing through the origin in bifrequency space. The phase of the integrated bispectrum is shown to be scale- and amplification-invariant. A minimal set of these invariants is selected as the feature vector for pattern classification. Pattern recognition using higher-order spectral invariants is fast, suited for parallel implementation, and works for signals corrupted by Gaussian noise. The classification technique is shown to distinguish two similar but different bolts given their one-dimensional profiles
Resumo:
A general procedure to determine the principal domain (i.e., nonredundant region of computation) of any higher-order spectrum is presented, using the bispectrum as an example. The procedure is then applied to derive the principal domain of the trispectrum of a real-valued, stationary time series. These results are easily extended to compute the principal domains of other higher-order spectra
Resumo:
A new approach to recognition of images using invariant features based on higher-order spectra is presented. Higher-order spectra are translation invariant because translation produces linear phase shifts which cancel. Scale and amplification invariance are satisfied by the phase of the integral of a higher-order spectrum along a radial line in higher-order frequency space because the contour of integration maps onto itself and both the real and imaginary parts are affected equally by the transformation. Rotation invariance is introduced by deriving invariants from the Radon transform of the image and using the cyclic-shift invariance property of the discrete Fourier transform magnitude. Results on synthetic and actual images show isolated, compact clusters in feature space and high classification accuracies
Resumo:
Despite many incidents about fake online consumer reviews have been reported, very few studies have been conducted to date to examine the trustworthiness of online consumer reviews. One of the reasons is the lack of an effective computational method to separate the untruthful reviews (i.e., spam) from the legitimate ones (i.e., ham) given the fact that prominent spam features are often missing in online reviews. The main contribution of our research work is the development of a novel review spam detection method which is underpinned by an unsupervised inferential language modeling framework. Another contribution of this work is the development of a high-order concept association mining method which provides the essential term association knowledge to bootstrap the performance for untruthful review detection. Our experimental results confirm that the proposed inferential language model equipped with high-order concept association knowledge is effective in untruthful review detection when compared with other baseline methods.
Resumo:
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the minimal prior knowledge that is usually available when conducting such experiments, it is recommended to derive designs robust across a variety of systems. However, incorporating such uncertainty into the design process can be a computationally intense exercise. Hence, our analytic approach is explored as an alternative.
Resumo:
In this paper, a variable-order nonlinear cable equation is considered. A numerical method with first-order temporal accuracy and fourth-order spatial accuracy is proposed. The convergence and stability of the numerical method are analyzed by Fourier analysis. We also propose an improved numerical method with second-order temporal accuracy and fourth-order spatial accuracy. Finally, the results of a numerical example support the theoretical analysis.
Resumo:
The recent floods in Queensland and elsewhere in Australia as well as the recent earthquakes in New Zealand have again given rise to very significant uninsured losses. This article looks at the issue of cover protection against catastrophes such as floods and earthquakes affecting home buildings and contents insurance and the standard cover provisions of the Insurance Contracts Act 1984 (Cth). It points also to the possibility of a national scheme to cover natural disasters including floods.
Resumo:
This study investigated whether conceptual development is greater if students learning senior chemistry hear teacher explanations and other traditional teaching approaches first then see computer based visualizations or vice versa. Five Canadian chemistry classes, taught by three different teachers, studied the topics of Le Chatelier’s Principle and dynamic chemical equilibria using scientific visualizations with the explanation and visualizations in different orders. Conceptual development was measured using a 12 item test based on the Chemistry Concepts Inventory. Data was obtained about the students’ abilities, learning styles (auditory, visual or kinesthetic) and sex, and the relationships between these factors and conceptual development due to the teaching sequences were investigated. It was found that teaching sequence is not important in terms of students’ conceptual learning gains, across the whole cohort or for any of the three subgroups.
Resumo:
Intermediaries have introduced electronic services with varying success. One of the problems an intermediary faces is deciding what kind of exchange service it should offer to its customers and suppliers. For example, should it only provide a catalogue or should it also enable customers to order products? Developing the right exchange design is a complex undertaking because of the many design options on the one hand and the interests of multiple actors to be considered on the other. This is far more difficult than simple prescriptions like ‘creating a win-win situation’ suggest. We address this problem by developing design patterns for the exchanges between customers, intermediary, and suppliers related to role, linkage, transparency, and ovelty choices. For developing these design patterns, we studied four distinct electronic intermediaries and dentified exchange design choices that require trade-offs relating to the interests of customers, intermediary, and suppliers. The exchange design patterns contribute to the development of design theory for electronic intermediaries by filling a gap between basic business models and detailed business process designs.
Resumo:
Several researchers have reported that cultural and language differences can affect online interactions and communications between students from different cultural backgrounds. Other researchers have asserted that online learning is a tool that can improve teaching and learning skills, but, its effectiveness depends on how the tool is used. Therefore, this study aims to investigate the kinds of challenges encountered by the international students and how they actually cope with online learning. To date little research exists on the perceptions of online learning environments by international Asian students, in particular Malaysian students who study in Australian Universities; hence this study aims to fill this gap. A mixed-method approach was used to collect quantitative and qualitative data using a modified Online Learning Environment Survey (OLES) instrument and focus group interviews. The sample comprised 76 international students from a university in Brisbane. Thirty-five domestic Australian students were included for comparison. Contrary to assumptions from previous research, the findings revealed that there were few differences between the international Asian students from Malaysia and Australian students with regard to their perceptions of online learning. Another cogent finding that emerged was that online learning was most effective when included within blended learning environments. The students clearly indicated that when learning in a blended environment, it was imperative that appropriate features are blended in and customised to suit the particular needs of international students. The study results indicated that the university could improve the quality of the blended online learning environment by: 1) establishing and maintaining a sense of learning community; 2) enhancing the self motivation of students; and 3) professional development of lecturers/tutors, unit coordinators and learning support personnel. Feedback from focus group interviews, highlighted the students‘ frustration with a lack of cooperative learning, strategies and skills which were expected of them by their lecturers/tutors in order to work productively in groups. They indicated a strong desire for lecturers/tutors to provide them prior training in these strategies and skills. The students identified four ways to optimise learning opportunities in cross-cultural spaces. These were: 1) providing preparatory and ongoing workshops focusing on the dispositions and roles of students within student-centred online learning environments; 2) providing preparatory and ongoing workshops on collaborative group learning strategies and skills; 3) providing workshops familiarising students with Australian culture and language; and 4) providing workshops on strategies for addressing technical problems. Students also indicated a strong desire for professional development of lecturers/tutors focused on: 1) teacher attributes, 2) ways to culturally sensitive curricula, and 3) collaborative learning and cooperative working strategies and skills, and 4) designing flexible program structures. Recommendations from this study will be useful to Australian universities where Asian international students from Malaysia study in blended learning environments. An induction program (online skills, collaborative and teamwork skills, study expectations plus familiarisation with Australian culture) for overseas students at the commencement of their studies; a cultural awareness program for lecturers (cultural sensitivity, ways to communicate and a better understanding of Asian educational systems), upskilling of lecturers‘ ability to structure their teaching online and to apply strong theoretical underpinnings when designing learning activities such as discussion forums, and consistency with regards to how content is located and displayed in a learning management system like Blackboard. Through addressing the research questions in this study, the researcher hopes to contribute to and advance the domain of knowledge related to online learning, and to better understand how international Malaysian students‘ perceive online learning environments. These findings have theoretical and pragmatic significance.
Resumo:
Trees, shrubs and other vegetation are of continued importance to the environment and our daily life. They provide shade around our roads and houses, offer a habitat for birds and wildlife, and absorb air pollutants. However, vegetation touching power lines is a risk to public safety and the environment, and one of the main causes of power supply problems. Vegetation management, which includes tree trimming and vegetation control, is a significant cost component of the maintenance of electrical infrastructure. For example, Ergon Energy, the Australia’s largest geographic footprint energy distributor, currently spends over $80 million a year inspecting and managing vegetation that encroach on power line assets. Currently, most vegetation management programs for distribution systems are calendar-based ground patrol. However, calendar-based inspection by linesman is labour-intensive, time consuming and expensive. It also results in some zones being trimmed more frequently than needed and others not cut often enough. Moreover, it’s seldom practicable to measure all the plants around power line corridors by field methods. Remote sensing data captured from airborne sensors has great potential in assisting vegetation management in power line corridors. This thesis presented a comprehensive study on using spiking neural networks in a specific image analysis application: power line corridor monitoring. Theoretically, the thesis focuses on a biologically inspired spiking cortical model: pulse coupled neural network (PCNN). The original PCNN model was simplified in order to better analyze the pulse dynamics and control the performance. Some new and effective algorithms were developed based on the proposed spiking cortical model for object detection, image segmentation and invariant feature extraction. The developed algorithms were evaluated in a number of experiments using real image data collected from our flight trails. The experimental results demonstrated the effectiveness and advantages of spiking neural networks in image processing tasks. Operationally, the knowledge gained from this research project offers a good reference to our industry partner (i.e. Ergon Energy) and other energy utilities who wants to improve their vegetation management activities. The novel approaches described in this thesis showed the potential of using the cutting edge sensor technologies and intelligent computing techniques in improve power line corridor monitoring. The lessons learnt from this project are also expected to increase the confidence of energy companies to move from traditional vegetation management strategy to a more automated, accurate and cost-effective solution using aerial remote sensing techniques.