960 resultados para swd: Image segmentation
Resumo:
We propose a probabilistic object classifier for outdoor scene analysis as a first step in solving the problem of scene context generation. The method begins with a top-down control, which uses the previously learned models (appearance and absolute location) to obtain an initial pixel-level classification. This information provides us the core of objects, which is used to acquire a more accurate object model. Therefore, their growing by specific active regions allows us to obtain an accurate recognition of known regions. Next, a stage of general segmentation provides the segmentation of unknown regions by a bottom-strategy. Finally, the last stage tries to perform a region fusion of known and unknown segmented objects. The result is both a segmentation of the image and a recognition of each segment as a given object class or as an unknown segmented object. Furthermore, experimental results are shown and evaluated to prove the validity of our proposal
Resumo:
Coating and filler pigments have strong influence to the properties of the paper. Filler content can be even over 30 % and pigment content in coating is about 85-95 weight percent. The physical and chemical properties of the pigments are different and the knowledge of these properties is important for optimising of optical and printing properties of the paper. The size and shape of pigment particles can be measured by different analysers which can be based on sedimentation, laser diffraction, changes in electric field etc. In this master's thesis was researched particle properties especially by scanning electron microscope (SEM) and image analysis programs. Research included nine pigments with different particle size and shape. Pigments were analysed by two image analysis programs (INCA Feature and Poikki), Coulter LS230 (laser diffraction) and SediGraph 5100 (sedimentation). The results were compared to perceive the effect of particle shape to the performance of the analysers. Only image analysis programs gave parameters of the particle shape. One part of research was also the sample preparation for SEM. Individual particles should be separated and distinct in ideal sample. Analysing methods gave different results but results from image analysis programs corresponded even to sedimentation or to laser diffraction depending on the particle shape. Detailed analysis of the particle shape required high magnification in SEM, but measured parameters described very well the shape of the particles. Large particles (ecd~1 µm) could be used also in 3D-modelling which enabled the measurement of the thickness of the particles. Scanning electron microscope and image analysis programs were effective and multifunctional tools for particle analyses. Development and experience will devise the usability of analysing method in routine use.
Resumo:
This thesis deals with distance transforms which are a fundamental issue in image processing and computer vision. In this thesis, two new distance transforms for gray level images are presented. As a new application for distance transforms, they are applied to gray level image compression. The new distance transforms are both new extensions of the well known distance transform algorithm developed by Rosenfeld, Pfaltz and Lay. With some modification their algorithm which calculates a distance transform on binary images with a chosen kernel has been made to calculate a chessboard like distance transform with integer numbers (DTOCS) and a real value distance transform (EDTOCS) on gray level images. Both distance transforms, the DTOCS and EDTOCS, require only two passes over the graylevel image and are extremely simple to implement. Only two image buffers are needed: The original gray level image and the binary image which defines the region(s) of calculation. No other image buffers are needed even if more than one iteration round is performed. For large neighborhoods and complicated images the two pass distance algorithm has to be applied to the image more than once, typically 3 10 times. Different types of kernels can be adopted. It is important to notice that no other existing transform calculates the same kind of distance map as the DTOCS. All the other gray weighted distance function, GRAYMAT etc. algorithms find the minimum path joining two points by the smallest sum of gray levels or weighting the distance values directly by the gray levels in some manner. The DTOCS does not weight them that way. The DTOCS gives a weighted version of the chessboard distance map. The weights are not constant, but gray value differences of the original image. The difference between the DTOCS map and other distance transforms for gray level images is shown. The difference between the DTOCS and EDTOCS is that the EDTOCS calculates these gray level differences in a different way. It propagates local Euclidean distances inside a kernel. Analytical derivations of some results concerning the DTOCS and the EDTOCS are presented. Commonly distance transforms are used for feature extraction in pattern recognition and learning. Their use in image compression is very rare. This thesis introduces a new application area for distance transforms. Three new image compression algorithms based on the DTOCS and one based on the EDTOCS are presented. Control points, i.e. points that are considered fundamental for the reconstruction of the image, are selected from the gray level image using the DTOCS and the EDTOCS. The first group of methods select the maximas of the distance image to new control points and the second group of methods compare the DTOCS distance to binary image chessboard distance. The effect of applying threshold masks of different sizes along the threshold boundaries is studied. The time complexity of the compression algorithms is analyzed both analytically and experimentally. It is shown that the time complexity of the algorithms is independent of the number of control points, i.e. the compression ratio. Also a new morphological image decompression scheme is presented, the 8 kernels' method. Several decompressed images are presented. The best results are obtained using the Delaunay triangulation. The obtained image quality equals that of the DCT images with a 4 x 4
Resumo:
Multispectral images are becoming more common in the field of remote sensing, computer vision, and industrial applications. Due to the high accuracy of the multispectral information, it can be used as an important quality factor in the inspection of industrial products. Recently, the development on multispectral imaging systems and the computational analysis on the multispectral images have been the focus of a growing interest. In this thesis, three areas of multispectral image analysis are considered. First, a method for analyzing multispectral textured images was developed. The method is based on a spectral cooccurrence matrix, which contains information of the joint distribution of spectral classes in a spectral domain. Next, a procedure for estimating the illumination spectrum of the color images was developed. Proposed method can be used, for example, in color constancy, color correction, and in the content based search from color image databases. Finally, color filters for the optical pattern recognition were designed, and a prototype of a spectral vision system was constructed. The spectral vision system can be used to acquire a low dimensional component image set for the two dimensional spectral image reconstruction. The data obtained by the spectral vision system is small and therefore convenient for storing and transmitting a spectral image.
Resumo:
Robotic platforms have advanced greatly in terms of their remote sensing capabilities, including obtaining optical information using cameras. Alongside these advances, visual mapping has become a very active research area, which facilitates the mapping of areas inaccessible to humans. This requires the efficient processing of data to increase the final mosaic quality and computational efficiency. In this paper, we propose an efficient image mosaicing algorithm for large area visual mapping in underwater environments using multiple underwater robots. Our method identifies overlapping image pairs in the trajectories carried out by the different robots during the topology estimation process, being this a cornerstone for efficiently mapping large areas of the seafloor. We present comparative results based on challenging real underwater datasets, which simulated multi-robot mapping
Resumo:
Quickremovalofbiosolidsinaquaculturefacilities,andspeciallyinrecirculatingaquaculturesystems(RAS),isoneofthemostimportantstepinwastemanagement.Sedimentationdynamicsofbiosolidsinanaquaculturetankwilldeterminetheiraccumulationatthebottomofthetank.
Resumo:
The ongoing development of the digital media has brought a new set of challenges with it. As images containing more than three wavelength bands, often called spectral images, are becoming a more integral part of everyday life, problems in the quality of the RGB reproduction from the spectral images have turned into an important area of research. The notion of image quality is often thought to comprise two distinctive areas – image quality itself and image fidelity, both dealing with similar questions, image quality being the degree of excellence of the image, and image fidelity the measure of the match of the image under study to the original. In this thesis, both image fidelity and image quality are considered, with an emphasis on the influence of color and spectral image features on both. There are very few works dedicated to the quality and fidelity of spectral images. Several novel image fidelity measures were developed in this study, which include kernel similarity measures and 3D-SSIM (structural similarity index). The kernel measures incorporate the polynomial, Gaussian radial basis function (RBF) and sigmoid kernels. The 3D-SSIM is an extension of a traditional gray-scale SSIM measure developed to incorporate spectral data. The novel image quality model presented in this study is based on the assumption that the statistical parameters of the spectra of an image influence the overall appearance. The spectral image quality model comprises three parameters of quality: colorfulness, vividness and naturalness. The quality prediction is done by modeling the preference function expressed in JNDs (just noticeable difference). Both image fidelity measures and the image quality model have proven to be effective in the respective experiments.
Resumo:
Segmentointi on perinteisesti ollut erityisesti kuluttajamarkkinoinnin työkalu, mutta siirtymä tuotteista palveluihin on lisännyt segmentointitarvetta myös teollisilla markkinoilla. Tämän tutkimuksen tavoite on löytää selkeästi toisistaan erottuvia asiakasryhmiä suomalaisen liikkeenjohdon konsultointiyritys Synocus Groupin tarjoaman case-materiaalin pohjalta. K-means-klusteroinnin avulla löydetään kolme potentiaalista markkinasegmenttiä perustuen siihen, mitkä tarjoamaelementit 105 valikoitua suomalaisen kone- ja metallituoteteollisuuden asiakasta ovat maininneet tärkeimmiksi. Ensimmäinen klusteri on hintatietoiset asiakkaat, jotka laskevat yksikkökohtaisia hintoja. Toinen klusteri koostuu huolto-orientoituneista asiakkaista, jotka laskevat tuntikustannuksia ja maksimoivat konekannan käyttötunteja. Tälle kohderyhmälle kannattaisi ehkä markkinoida teknisiä palveluja ja huoltosopimuksia. Kolmas klusteri on tuottavuussuuntautuneet asiakkaat, jotka ovat kiinnostuneita suorituskyvyn kehittämisestä ja laskevat tonnikohtaisia kustannuksia. He tavoittelevat alempia kokonaiskustannuksia lisääntyneen suorituskyvyn, pidemmän käyttöiän ja alempien huoltokustannusten kautta.
Resumo:
The main objective for this study was to explore certain organization’s product line rebranding process and its impact on product line’s perceived image. The case company is a global paper, packaging and forest products company, business segment paper board. The audience explored is one of the company’s major customers, merchant in Germany. The research was performed as a descriptive case study with a purpose to provide longitudinal insight into the product line image and its eventual alteration as a result of the case company’s rebranding process. Mainly qualitative methods were used for conducting the research. The data for the empirical part was collected with a web-based survey at two different points of time; before the rebranded products entered the market and after they had been available approximately six months. The results of this study reveal that the case company has performed well in its attempt to improve product line’s brand image through rebranding. It was found that between the two brand image measurements the product brand image seems to have improved in all of the areas which according to theoretical framework of this study contribute to formation of brand image; brand associations, marketing communications and interpersonal relationships, not forgetting the original platform that initiated the change; technical quality modifications. In other words it may be concluded that as technical quality was brought to a new level, also assessments about the brand image improved respectively.
Resumo:
Diabetes is a rapidly increasing worldwide problem which is characterised by defective metabolism of glucose that causes long-term dysfunction and failure of various organs. The most common complication of diabetes is diabetic retinopathy (DR), which is one of the primary causes of blindness and visual impairment in adults. The rapid increase of diabetes pushes the limits of the current DR screening capabilities for which the digital imaging of the eye fundus (retinal imaging), and automatic or semi-automatic image analysis algorithms provide a potential solution. In this work, the use of colour in the detection of diabetic retinopathy is statistically studied using a supervised algorithm based on one-class classification and Gaussian mixture model estimation. The presented algorithm distinguishes a certain diabetic lesion type from all other possible objects in eye fundus images by only estimating the probability density function of that certain lesion type. For the training and ground truth estimation, the algorithm combines manual annotations of several experts for which the best practices were experimentally selected. By assessing the algorithm’s performance while conducting experiments with the colour space selection, both illuminance and colour correction, and background class information, the use of colour in the detection of diabetic retinopathy was quantitatively evaluated. Another contribution of this work is the benchmarking framework for eye fundus image analysis algorithms needed for the development of the automatic DR detection algorithms. The benchmarking framework provides guidelines on how to construct a benchmarking database that comprises true patient images, ground truth, and an evaluation protocol. The evaluation is based on the standard receiver operating characteristics analysis and it follows the medical practice in the decision making providing protocols for image- and pixel-based evaluations. During the work, two public medical image databases with ground truth were published: DIARETDB0 and DIARETDB1. The framework, DR databases and the final algorithm, are made public in the web to set the baseline results for automatic detection of diabetic retinopathy. Although deviating from the general context of the thesis, a simple and effective optic disc localisation method is presented. The optic disc localisation is discussed, since normal eye fundus structures are fundamental in the characterisation of DR.
Resumo:
Speaker diarization is the process of sorting speeches according to the speaker. Diarization helps to search and retrieve what a certain speaker uttered in a meeting. Applications of diarization systemsextend to other domains than meetings, for example, lectures, telephone, television, and radio. Besides, diarization enhances the performance of several speech technologies such as speaker recognition, automatic transcription, and speaker tracking. Methodologies previously used in developing diarization systems are discussed. Prior results and techniques are studied and compared. Methods such as Hidden Markov Models and Gaussian Mixture Models that are used in speaker recognition and other speech technologies are also used in speaker diarization. The objective of this thesis is to develop a speaker diarization system in meeting domain. Experimental part of this work indicates that zero-crossing rate can be used effectively in breaking down the audio stream into segments, and adaptive Gaussian Models fit adequately short audio segments. Results show that 35 Gaussian Models and one second as average length of each segment are optimum values to build a diarization system for the tested data. Uniting the segments which are uttered by same speaker is done in a bottom-up clustering by a newapproach of categorizing the mixture weights.
Resumo:
1897/10 (N11).
Resumo:
1897/02 (N3).
Resumo:
1897/08 (N8).
Resumo:
1897/06 (N7).