998 resultados para success measurement
Resumo:
Although 17β-estradiol (E2) deficiency has been linked to the development of osteoarthritis (OA) in middle-aged women, there are few studies relating other estrogens and estrogen metabolites (EMs) to this condition. We developed a high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) method to measure the levels of six EMs (i.e., estrone, E2, estriol, 2-hydroxyestrone, 2-hydroxyestradiol, and 16a-hydroxyestrone) in healthy pre- and postmenopausal women and women with OA. This method had a precision ranging from 1.1 to 3.1% and a detection limit ranging from 10 to 15 pg. Compared to healthy women, serum-free E2 was lower in the luteal and postmenopausal phases in women with OA, and total serum E2 was lower in postmenopausal women with OA. Moreover, compared to healthy women, total serum 2-hydroxyestradiol was higher in postmenopausal women with OA and total serum 2-hydroxyestrone was lower in both the luteal and follicular phases in women with OA. In conclusion, our HPLC-ESI-MS/MS method allowed the measurement of multiple biochemical targets in a single assay, and, given its increased cost-effectiveness, simplicity, and speed relative to previous methods, this method is suitable for clinical studies.
Resumo:
Radiotherapy is one of the main approaches to cure prostate cancer, and its success depends on the accuracy of dose planning. A complicating factor is the presence of a metallic prosthesis in the femur and pelvis, which is becoming more common in elderly populations. The goal of this work was to perform dose measurements to check the accuracy of radiotherapy treatment planning under these complicated conditions. To accomplish this, a scale phantom of an adult pelvic region was used with alanine dosimeters inserted in the prostate region. This phantom was irradiated according to the planned treatment under the following three conditions: with two metallic prostheses in the region of the femur head, with only one prosthesis, and without any prostheses. The combined relative standard uncertainty of dose measurement by electron spin resonance (ESR)/alanine was 5.05%, whereas the combined relative standard uncertainty of the applied dose was 3.35%, resulting in a combined relative standard uncertainty of the whole process of 6.06%. The ESR dosimetry indicated that there was no difference (P>0.05, ANOVA) in dosage between the planned dose and treatments. The results are in the range of the planned dose, within the combined relative uncertainty, demonstrating that the treatment-planning system compensates for the effects caused by the presence of femur and hip metal prostheses.
Resumo:
In this thesis the basic structure and operational principals of single- and multi-junction solar cells are considered and discussed. Main properties and characteristics of solar cells are briefly described. Modified equipment for measuring the quantum efficiency for multi-junction solar cell is presented. Results of experimental research single- and multi-junction solar cells are described.
Resumo:
The power is still today an issue in wearable computing applications. The aim of the present paper is to raise awareness of the power consumption of wearable computing devices in specific scenarios to be able in the future to design energy efficient wireless sensors for context recognition in wearable computing applications. The approach is based on a hardware study. The objective of this paper is to analyze and compare the total power consumption of three representative wearable computing devices in realistic scenarios such as Display, Speaker, Camera and microphone, Transfer by Wi-Fi, Monitoring outdoor physical activity and Pedometer. A scenario based energy model is also developed. The Samsung Galaxy Nexus I9250 smartphone, the Vuzix M100 Smart Glasses and the SimValley Smartwatch AW-420.RX are the three devices representative of their form factors. The power consumption is measured using PowerTutor, an android energy profiler application with logging option and using unknown parameters so it is adjusted with the USB meter. The result shows that the screen size is the main parameter influencing the power consumption. The power consumption for an identical scenario varies depending on the wearable devices meaning that others components, parameters or processes might impact on the power consumption and further study is needed to explain these variations. This paper also shows that different inputs (touchscreen is more efficient than buttons controls) and outputs (speaker sensor is more efficient than display sensor) impact the energy consumption in different way. This paper gives recommendations to reduce the energy consumption in healthcare wearable computing application using the energy model.
Resumo:
The value that the customer perceives from a supplier’s offering, impacts customer’s decision making and willingness to pay at the time of the purchase, and the overall satisfaction. Thus, for a business supplier, it is critical to understand their customers’ value perceptions. The objective of this thesis is to understand what measurement and monitoring system customers value, by examining their key purchasing criteria and perceived benefits. Theoretical part of this study consists on reviewing relevant literature on organizational buying behavior and customer perceived value. This study employs a qualitative interview research method. The empirical part of this research consisted of conducting 20 in-depth interviews with life science customers in USA and in Europe. Quality and technical features are the most important purchasing criteria, while product-related benefits seem to be the most important perceived benefits. At the marketing of the system, the emphasis should be at which regulations the system complies with, references of supplier’s prior experience, the reliability and usability of the system, and total costs. The benefits that should be emphasized are the better control of customer’s process, and the proof of customer’s product quality
Resumo:
In recent years, technological advancements in microelectronics and sensor technologies have revolutionized the field of electrical engineering. New manufacturing techniques have enabled a higher level of integration that has combined sensors and electronics into compact and inexpensive systems. Previously, the challenge in measurements was to understand the operation of the electronics and sensors, but this has now changed. Nowadays, the challenge in measurement instrumentation lies in mastering the whole system, not just the electronics. To address this issue, this doctoral dissertation studies whether it would be beneficial to consider a measurement system as a whole from the physical phenomena to the digital recording device, where each piece of the measurement system affects the system performance, rather than as a system consisting of small independent parts such as a sensor or an amplifier that could be designed separately. The objective of this doctoral dissertation is to describe in depth the development of the measurement system taking into account the challenges caused by the electrical and mechanical requirements and the measurement environment. The work is done as an empirical case study in two example applications that are both intended for scientific studies. The cases are a light sensitive biological sensor used in imaging and a gas electron multiplier detector for particle physics. The study showed that in these two cases there were a number of different parts of the measurement system that interacted with each other. Without considering these interactions, the reliability of the measurement may be compromised, which may lead to wrong conclusions about the measurement. For this reason it is beneficial to conceptualize the measurement system as a whole from the physical phenomena to the digital recording device where each piece of the measurement system affects the system performance. The results work as examples of how a measurement system can be successfully constructed to support a study of sensors and electronics.
Resumo:
The main goal of this master’s thesis was to find out, how to improve customer experience management and measurement. This study is a qualitative case study, in which the data collection method has been interviews. In addition, some of the company’s customer experience measurement methods have been analyzed. The theoretical background is applied in practice by interviewing 5 representatives from the case company. In the case company, the management has launched a customer experience focused program, and given guidelines for customer experience improvement. In the case company, customer experience is measured with different methods, one example is asking the recommendation readiness from a customer. In order to improve the customer experience management, the case company should define, what the company means with customer experience and what kind of customer experience the company is aiming to create. After the encounter, the customer should be left with feelings of satisfaction, positivity and trust. The company should focus on easiness in its processes, on top of which the processes should work fluently. The customer experience management should be improved through systematic planning, and by combining and standardizing different measures. In addition, some channel-based measures should be used. The measurement conducted should be more customer focused, and the case company should form an understanding, which touch points are the most relevant to measure.