996 resultados para silicon carbide thin films
Resumo:
ZnTe1-xSx epitaxial layers grown on GaAs by molecular-beam epitaxy were studied by photoluminescence (PL) as a function of temperatures, excitation powers, and hydrostatic pressures. A sulfur-related emission peak, labeled as P-2, is identified as a deep-level emission by hydrostatic-pressure PL measurement. This indicates that sulfur atoms form isoelectronic centers in a ZnTe matrix. The results qualitatively agree with the theoretical prediction and show experimental evidence of isoelectronic S in ZnTe. A model is proposed to explain the emission mechanisms in the ZnTe1-xSx system with small x values.
Resumo:
Chemically vapour deposited silicon on sapphire (SOS) films 0.25 mu m thick were implanted with Si-28(+) and recrystallized in solid phase by furnace annealing (FA) and IR rapid thermal annealing (RTA) in our laboratory. An improvement in crystalline quality can be obtained using both annealing procedures. After FA, it is hard to retain the intrinsic high resistivity value(10(4)-10(5) Ohm cm) observed in as-grown SOS films, so the improvement process cannot be put to practical use effectively. However, it is demonstrated that by properly adjusting the implantation and RTA conditions, significant improvements in both film quality and film autodoping can be accomplished. This work describes a modified double solid phase epitaxy process in which the intrinsic high resistivities of the as grown SOS films are retained. The mechanism of suppression of Al autodoping is discussed.
Resumo:
于2010-11-23批量导入
Resumo:
于2010-11-23批量导入
Resumo:
The structural evolution of the ordered N-N' dibutyl-substituted quinacridone (QA4C) multilayers (3 MLs) has been monitored in situ and in real time at various substrate temperatures using low energy electron diffraction (LEED) during organic molecular beam epitaxy (MBE). Experimental results of LEED patterns clearly reveal that the structure of the multilayer strongly depends on the substrate temperature. Multilayer growth can be achieved at the substrate temperatures below 300 K, while at the higher temperatures we can only get one ordered monolayer of QA4C. Two kinds of structures, the commensurate and incommensurate one, often coexist in the QA4C multilayer. With a method of the two-step substrate temperatures, the incommensurate one can be suppressed, and the commensurate, on the other hand, more similar to the (001) plane of the QA4C bulk crystal, prevails with the layer of QA4C increasing to 3 MLs. The two structures in the multilayers are compressed slightly in comparison to the original ones in the first monolayer.