916 resultados para post and core technique
Resumo:
An experiment was carried out for a period of six months during October 2008 to March 2009 to investigate the health status of a snakehead, Channa punctatus through clinical and histopathological technique. Fish were collected from two fish markets of Mymensingh district. Clinically and histopathologically, it was observed that fishes from both the markets were healthy in October and March but moderately affected in November and February. In the months of December and January, 7.5- 8% of the fishes were affected clinically and showing various clinical signs like, discolouration, deep ulcer, ill health, scale loss and rough skin. Histopathologically, in the month of December and January, major observed pathologies of skin and muscle were necrosis, vacuums, fungal granuloma and loss of dermis. Gills were affected having parasitic cysts, monogenetic trematode, clubbing, loss of primary and secondary gill lamellae, hemorrhage, necrosis and hypertrophy. Vacuoles, pyknosis, hepatic necrosis, hemorrhages and fungal granuloma were observed in liver. Renal pathology included necrosis and pyknosis of kidney tubules, hemorrhages, presence of bacterial colony and vacuoles. From present findings, it was found that, fishes from urban market were more affected with diseases than pre-urban market especially in the months of December and January when compared with other months. From overall observation, C. punctatus were severely affected by epizootic ulcerative syndrome (EUS), dactylogyrosis, protozoan and bacterial diseases during colder months of the year.
Resumo:
An immersed finite element method is presented to compute flows with complex moving boundaries on a fixed Cartesian grid. The viscous, incompressible fluid flow equations are discretized with b-spline basis functions. The two-scale relation for b-splines is used to implement an elegant and efficient technique to satisfy the LBB condition. On non-grid-aligned fluid domains and at moving boundaries, the boundary conditions are enforced with a consistent penalty method as originally proposed by Nitsche. In addition, a special extrapolation technique is employed to prevent the loss of numerical stability in presence of arbitrarily small cut-cells. The versatility and accuracy of the proposed approach is demonstrated by means of convergence studies and comparisons with previous experimental and computational investigations.
Resumo:
This paper discusses the sustainability of two different approaches to upgrade water and sanitation infrastructure in Kenya’s largest informal settlement, Kibera. A background to the urbanization of poverty is outlined along with approaches to urban slums. Two case-studies of completed interventions of infrastructure upgrading have been investigated. In one case-study, the upgrading method driven by an NGO uses an integrated livelihoods and partnership technique at community level to create an individual project. in the other case-study, the method is a collaboration between the government and a multi-lateral agency to deliver upgraded services as a part of a country-wide programme. The ‘bottom-up’ (project) and ‘top-down’ (programme) approaches each seek sustainability and aim to achieve this in the same context using different techniques. This paper investigates the sustainability of each approach. The merits and challenges of the approaches are discussed with the projected future of Kibera. The paper highlights the valuable opportunity for the role of appropriate engineering infrastructure for sustainable urban development, as well as the alleviation of poverty in a developing context.
Resumo:
Fluid flow in biological tissues is important in both mechanical and biological contexts. Given the hierarchical nature of tissues, there are varying length scales at which time-dependent mechanical behavior due to fluid flow may be exhibited. Here, spherical nanoindentation and microindentation testings are used for the characterization of length scale effects in the mechanical response of hydrated tissues. Although elastic properties were consistent across length scales, there was a substantial difference between the time-dependent mechanical responses for large and small contact radii in the same tissue specimens. This difference was far more obvious when poroelastic analysis was used instead of viscoelastic analysis. Overall, indentation testing is a fast and robust technique for characterizing the hierarchical structure of biological materials from nanometer to micrometer length scales and is capable of making quantitative material property measurements to do with fluid flow. © 2011 Materials Research Society.
Resumo:
Restricted deposits of fossil fuels and ecological problems created by their extensive use require a transition to renewable energy resources and clean fuel free from emissions of CO2. This fuel is likely to be liquid hydrogen. An important feature of liquid hydrogen is that it allows wide use of superconductivity. Superconductors provide compactness, high efficiency, savings in energy and a range of new applications not possible with other materials. The benefits of superconductivity justify use of low temperatures and facilitate development of fossil-free energy economy. The widespread use of superconductors requires a simple and reliable technique to monitor their properties. Magneto-optical imaging (MOI) is currently the only direct technique allowing visualization of the superconducting properties of materials. We report the application of this technique to key superconducting materials suitable for the hydrogen economy: MgB2 and high temperature superconductors (HTS) in bulk and thin-film form. The study shows that the MOI technique is well suited to the study of these materials. It demonstrates the advantage of HTS at liquid hydrogen temperatures and emphasizes the benefits of MgB2, in particular. © 2012 Springer Science+Business Media New York.
Resumo:
This paper discusses the sustainability of two different approaches to upgrade water and sanitation infrastructure in Kenya's largest informal settlement, Kibera. A background to the urbanisation of poverty is outlined along with approaches to urban slums. Two case studies of completed interventions of infrastructure upgrading have been investigated. In one case study, the upgrading method driven by a non-government organisation uses an integrated livelihoods and partnership technique at community level to create an individual project. In the other case study, the method is a collaboration between the government and a multi-lateral agency to deliver upgraded services as part of a country-wide programme. The 'bottom-up' (project) and 'top-down' (programme) approaches both seek sustainability and aim to achieve this in the same context using different techniques. This paper investigates the sustainability of each approach. The merits and challenges of the approaches are discussed with the projected future of Kibera. The paper highlights the valuable opportunity for the role of appropriate engineering infrastructure for sustainable urban development, as well as the alleviation of poverty in a developing context.
Resumo:
As part of the investigations into a surgical incident involving the accidental retention inside a patient's venous system of a guide wire for central venous catheterisation (CVC), the Human Error Assessment and Reduction Technique (HEART) was used to examine the potential for further occurrences. It was found to be time-efficient and to yield plausible probabilities of human error, although its use in healthcare has challenges, suggesting adaptation would be beneficial.
Resumo:
This paper reports on fuel design optimization of a PWR operating in a self sustainable Th-233U fuel cycle. Monte Carlo simulated annealing method was used in order to identify the fuel assembly configuration with the most attractive breeding performance. In previous studies, it was shown that breeding may be achieved by employing heterogeneous Seed-Blanket fuel geometry. The arrangement of seed and blanket pins within the assemblies may be determined by varying the designed parameters based on basic reactor physics phenomena which affect breeding. However, the amount of free parameters may still prove to be prohibitively large in order to systematically explore the design space for optimal solution. Therefore, the Monte Carlo annealing algorithm for neutronic optimization is applied in order to identify the most favorable design. The objective of simulated annealing optimization is to find a set of design parameters, which maximizes some given performance function (such as relative period of net breeding) under specified constraints (such as fuel cycle length). The first objective of the study was to demonstrate that the simulated annealing optimization algorithm will lead to the same fuel pins arrangement as was obtained in the previous studies which used only basic physics phenomena as guidance for optimization. In the second part of this work, the simulated annealing method was used to optimize fuel pins arrangement in much larger fuel assembly, where the basic physics intuition does not yield clearly optimal configuration. The simulated annealing method was found to be very efficient in selecting the optimal design in both cases. In the future, this method will be used for optimization of fuel assembly design with larger number of free parameters in order to determine the most favorable trade-off between the breeding performance and core average power density.
Resumo:
Four fast reactor concepts using lead (LFR), liquid salt, NaCl-KCl-MgCl2 (LSFR), sodium (SFR), and supercritical CO2 (GFR) coolants are compared. Since economy of scale and power conversion system compactness are the same by virtue of the consistent 2400 MWt rating and use of the S-CO2 power conversion system, the achievable plant thermal efficiency, core power density and core specific powers become the dominant factors. The potential to achieve the highest efficiency among the four reactor concepts can be ranked from highest to lowest as follows: (1) GFR, (2) LFR and LSFR, and (3) SFR. Both the lead- and salt-cooled designs achieve about 30% higher power density than the gas-cooled reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor. Fuel cycle costs are favored for the sodium reactor by virtue of its high specific power of 65 kW/kgHM compared to the lead, salt and gas reactor values of 45, 35, and 21 kW/kgHM, respectively. In terms of safety, all concepts can be designed to accommodate the unprotected limiting accidents through passive means in a self-controllable manner. However, it does not seem to be a preferable option for the GFR where the active or semi-passive approach will likely result in a more economic and reliable plant. Lead coolant with its superior neutronic characteristics and the smallest coolant temperature reactivity coefficient is easiest to design for self-controllability, while the LSFR requires special reactivity devices to overcome its large positive coolant temperature coefficient. The GFR required a special core design using BeO diluent and a supercritical CO2 reflector to achieve negative coolant void worth-one of the conditions necessary for inherent shutdown following large LOCA. Protected accidents need to be given special attention in the LSFR and LFR due to the small margin to freezing of their coolants, and to a lesser extent in the SFR. © 2009 Elsevier B.V. All rights reserved.
Resumo:
Coupled Monte Carlo depletion systems provide a versatile and an accurate tool for analyzing advanced thermal and fast reactor designs for a variety of fuel compositions and geometries. The main drawback of Monte Carlo-based systems is a long calculation time imposing significant restrictions on the complexity and amount of design-oriented calculations. This paper presents an alternative approach to interfacing the Monte Carlo and depletion modules aimed at addressing this problem. The main idea is to calculate the one-group cross sections for all relevant isotopes required by the depletion module in a separate module external to Monte Carlo calculations. Thus, the Monte Carlo module will produce the criticality and neutron spectrum only, without tallying of the individual isotope reaction rates. The onegroup cross section for all isotopes will be generated in a separate module by collapsing a universal multigroup (MG) cross-section library using the Monte Carlo calculated flux. Here, the term "universal" means that a single MG cross-section set will be applicable for all reactor systems and is independent of reactor characteristics such as a neutron spectrum; fuel composition; and fuel cell, assembly, and core geometries. This approach was originally proposed by Haeck et al. and implemented in the ALEPH code. Implementation of the proposed approach to Monte Carlo burnup interfacing was carried out through the BGCORE system. One-group cross sections generated by the BGCORE system were compared with those tallied directly by the MCNP code. Analysis of this comparison was carried out and led to the conclusion that in order to achieve the accuracy required for a reliable core and fuel cycle analysis, accounting for the background cross section (σ0) in the unresolved resonance energy region is essential. An extension of the one-group cross-section generation model was implemented and tested by tabulating and interpolating by a simplified σ0 model. A significant improvement of the one-group cross-section accuracy was demonstrated.
Resumo:
Response of a PWR core loaded with Combined Non-Fertile and UO2 (CONFU) fuel assemblies to control rod ejection accident was evaluated. A number of core arrangements and TRU fuel compositions were considered and the results were compared with the performance of a reference all-UO2 core. The comparison was based on the results of a simple point kinetics model with thermal reactivity feedbacks and temperature dependant materials properties. The reactivity coefficients and core average kinetics parameters were obtained from the full core 3D neutronic simulations. The results show that application of the CONFU assembly concept causes only minor deviation of fuel performance characteristics in reactivity initiated accidents. This is a consequence of relatively small loadings of TRU in the CONFU assembly and therefore dominating role of conventional UO2 fuel in the neutronic performance of the core.
Resumo:
Ground improvement techniques can be adopted to prevent existing buildings built on liquefiable soils sustaining damage in future earthquakes. Impermeable geomembrane containment walls may be an economic and successful technique but their design and performance are currently not well defined or well understood for this application. This paper describes centrifuge testing carried out to investigate the performance of such containment walls as a liquefaction remediation method for a single degree of freedom frame structure. The results were compared with those from similar centrifuge testing carried out with the same structure founded on unimproved sand, to assess the effectiveness of the remediation method. It was found that the geomembrane containment walls tested were effective at reducing structural settlement and did not significantly increase the accelerations transmitted to the structure. Structural settlements were reduced primarily by mobilising hoop stress and preventing lateral soil movement. By preventing surface drainage, a decrease in the volume change of the foundation sand was also observed. In addition, the impermeability of the walls may be important as this prevented rapid migration of pore water fromthe free field to the foundation region.
Resumo:
An experimental comparison of several vortex generator geometries was conducted at Mach 1.5, 1.8, and 2.5 to better understand downstream vortex development as a function of device shape and Mach number. The devices had heights less than that of the boundary-layer ("micro"-vortex generators) and were either vane-shaped or of the alternative microramp geometry. LDV was used to measure two components of velocity at several stations downstream of the devices. The velocity data were then fitted to a vortex model so that vortex parameters such as circulation, core radius, and trajectory were estimated. Mach number dependence was seen for all parameters. Vortex height and core radius both tended to decrease slightly with increasing Mach number. A critical vane angle for maximum circulation was observed and also decreased with increasing Mach number. Circulation was seen to scale with wall-friction velocity for Mach 1.5 and 1.8 but not 2.5. © 2012 by W.R. Nolan and H. Babinsky.
Resumo:
Practical testing of the feasibility of cyanobacterial inoculation to speed up the recovery of biological soil crusts in the field was conducted in this experiment. Results showed that cyanobacterial and algal cover climbed up to 48.5% and a total of 14 cyanobacterial and algal species were identified at the termination of inoculation experiment; biological crusts' thickness, compressive and chlorophyll a content increased with inoculation time among 3 years; moss species appeared in the second year; cyanobacterial inoculation increased organic carbon and total nitrogen of the soil; total salt, calcium carbonate and electrical conductivity in the soil also increased after inoculation. Diverse vascular plant communities composed of 10 and 9 species are established by cyanobacterial inoculation on the windward and leeward surface of the dunes, respectively, after 3 years. The Simpson index for the above two communities are 0.842 and 0.852, while the Shannon-Weiner index are 2.097 and 2.053, respectively. In conclusion, we suggest that cyanobacterial inoculation would be a suitable and effective technique to recover biological soil crusts, and may further restore the ecological system. (C) 2008 Published by Elsevier Ltd.
Resumo:
In this paper, the transverse rocking mechanism of a barrel vaulted structure subjected to horizontal cyclic loads is analysed by means of experimental tests on full scale model and by means of non-linear FE analyses. The study is part of an ongoing experimental and theoretical research program, developed by the University of Brescia, concerning the seismic behaviour of ancient masonry buildings. The scope of the paper is to provide some evidence of the rocking mechanism experienced by barrel vaulted structures under horizontal loading. The understanding of the behaviour of these structural systems is necessary for their seismic vulnerability assessment, as well as for the correct design of possible strengthening techniques. A numeric FE model was validated through comparison with the experimental results and it was used to verify the efficiency of two common strengthening solutions: the technique of the overlaying reinforced concrete slab and the technique of the thin spandrel walls. Experimental and numeric results will be discussed in the paper.