989 resultados para polarization beam splitter
Resumo:
The polarization dependence of the double resonant Raman scattering (2D) band in bilayer graphene (BLG) is studied as a function of the excitation laser energy. It has been known that the complex shape of the 2D band of BLG can be decomposed into four Lorentzian peaks with different Raman frequency shifts attributable to four individual scattering paths in the energy-momentum space. From our polarization dependence study, however, we reveal that each of the four different peaks is actually doubly degenerate in its scattering channels, i.e., two different scattering paths with similar Raman frequency shifts for each peak. We find theoretically that one of these two paths, ignored for a long time, has a small contribution to their scattering intensities but are critical in understanding their polarization dependences. Because of this, the maximum-to-minimum intensity ratios of the four peaks show a strong dependence on the excitation energy, unlike the case of single-layer graphene (SLG). Our findings thus reveal another interesting aspect of electron-phonon interactions in graphitic systems. © 2014 Elsevier Ltd. All rights reserved.
Resumo:
This paper explores a design strategy of hopping robots, which makes use of free vibration of an elastic curved beam. In this strategy, the leg structure consists of a specifically shaped elastic curved beam and a small rotating mass that induces free vibration of the entire robot body. Although we expect to improve energy efficiency of locomotion by exploiting the mechanical dynamics, it is not trivial to take advantage of the coupled dynamics between actuation and mechanical structures for the purpose of locomotion. From this perspective, this paper explains the basic design principles through modeling, simulation, and experiments of a minimalistic hopping robot platform. More specifically, we show how to design elastic curved beams for stable hopping locomotion and the control method by using unconventional actuation. In addition, we also analyze the proposed design strategy in terms of energy efficiency and discuss how it can be applied to the other forms of legged robot locomotion. © 1996-2012 IEEE.
Resumo:
The off-axis sonar beam patterns of eight free-ranging finless porpoises were measured using attached data logger systems. The transmitted sound pressure level at each beam angle was calculated from the animal's body angle, the water surface echo level, and the swimming depth. The beam pattern of the off-axis signals between 45 and 115 (where 0 corresponds to the on-axis direction) was nearly constant. The sound pressure level of the off-axis signals reached 162 dB re 1 mPa peak-to-peak. The surface echo level received at the animal was over 140 dB, much higher than the auditory threshold level of small odontocetes. Finless porpoises are estimated to be able to receive the surface echoes of off-axis signals even at 50-m depth. Shallow water systems (less than 50-m depth) are the dominant habitat of both oceanic and freshwater populations of this species. Surface echoes may provide porpoises not only with diving depth information but also with information about surface direction and location of obstacles (including prey items) outside the on-axis sector of the sonar beam. 2005 Acoustical Society of America.
Resumo:
This study presents a novel approach to the design of low-cost and energy-efficient hopping robots, which makes use of free vibration of an elastic curved beam. We found that a hopping robot could benefit from an elastic curved beam in many ways such as low manufacturing cost, light body weight and small energy dissipation in mechanical interactions. A challenging problem of this design strategy, however, lies in harnessing the mechanical dynamics of free vibration in the elastic curved beam: because the free vibration is the outcome of coupled mechanical dynamics between actuation and mechanical structures, it is not trivial to systematically design mechanical structures and control architectures for stable locomotion. From this perspective, this paper investigates a case study of simple hopping robot to identify the design principles of mechanics and control. We developed a hopping robot consisting of an elastic curved beam and a small rotating mass, which was then modeled and analyzed in simulation. The experimental results show that the robot is capable of exhibiting stable hopping gait patterns by using a small actuation with no sensory feedback owing to the intrinsic stability of coupled mechanical dynamics. Furthermore, an additional analysis shows that, by exploiting free vibration of the elastic curved beam, cost of transport of the proposed hopping locomotion can be in the same rage of animals' locomotion including human running. © 2011 IEEE.
Resumo:
An in vitro assay was used to examine the effect of Bothriocephalus acheilognathi Yamaguti, 1934 (Cestoda: Pseudophyllidea) on the polarization response of pronephric leucocytes of carp, Cyprinus carpio. Leucocytes, isolated from naive, naturally-infected fish and carp injected intraperitoneally with cestode extracts, were exposed to parasite extracts (protein concentrations 0-10.0 mu g ml(-1)), for up to 24 h in the presence or absence of carp serum. In general, polarization responses of the pronephric leucocytes, primarily neutrophils and eosinophils, increased with incubation time although there was no significant difference in the response induced by the different protein concentrations. Differences in the polarization response were, however, observed in naive, naturally infected and injected fish and the cells responded differently in the presence and absence of carp serum. In the absence of carp serum the polarization response of pronephric leucocytes in vitro was significantly reduced with cells obtained from injected and naturally infected fish compared with those obtained from naive carp. This suppression of leucocyte migration was however reduced by the addition of carp serum to the in vitro system. The role of this interaction between the possible suppression of polarization induced by the parasite and stimulation by serum is discussed.
Resumo:
A silicon-on-insulator optical fiber-to-waveguide spot-size converter (SSC) using Poly-MethylMethAcrylate (PMMA) is presented for integrated optical circuits. Unlike the conventional use of PMMA as a positive resist, it has been successfully used as a negative resist with high-dose electron exposure for the fabrication of ultrafine silicon wire waveguides. Additionally, this process is able to reduce the side-wall roughness, and substantially depresses the unwanted propagation loss. Exploiting this technology, the authors demonstrated that the SSC can improve coupling efficiency by as much as over 2.5 dB per coupling facet, compared with that of SSC fabricated with PMMA as a positive resist with the same dimension.
Resumo:
It is revealed from first-principles calculations that polarization-induced asymmetric distribution of oxygen vacancies plays an important role in the insulating behavior at p-type LaAlO3/SrTiO3 interface. The formation energy of the oxygen vacancy (V-O) is much smaller than that at the surface of the LaAlO3 overlayer, causing all the carriers to be compensated by the spontaneously formed V-O's at the interface. In contrast, at an n-type interface, the formation energy of V-O is much higher than that at the surface, and the V-O's formed at the surface enhance the carrier density at the interface. This explains the puzzling behavior of why the p-type interface is always insulating but the n-type interface can be conducting.
Resumo:
in experiment, characteristics of silicon microring/racetrack resonators in submicron rib waveguides have been systematically investigated. It is demonstrated that only a transverse-electric mode is guided for a ratio of slab height to rib height h/H = 0.5. Thus, these microring/racetrack resonators can only function for quasi-transverse-electric mode, while they get rid of transverse-magnetic polarization. Electron beam lithography and inductively coupled plasma etching were employed and improved to reduce side-wall roughness for low propagation loss and high performance resonators. Then, the effects of waveguide dimensions, coupling region design, waveguide roughness, and oxide cladding for the resonators have been considered and analyzed. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Hexagonal GaN is grown on a Si(111) substrate with AlN as a buffer layer by gas source molecular beam epitaxy (GSMBE) with ammonia. The thickness of AlN buffer is changed from 9 to 72 nm. When the thickness of AlN buffer is 36 nm, the surface morphology and crystal quality of GaN is optimal. The in-situ reflection high energy electron diffraction (RHEED) reveals that the transition to a two-dimensional growth mode of AlN is the key to the quality of GaN. However, the thickness of AlN buffer is not so critical to the residual in-plane tensile stress in GaN grown on Si(111) by GSMBE for AlN thickness between 9 to 72 nm.
Resumo:
We theoretically investigate the electron transport and spin polarization of two coupled quantum wells with Dresselhaus spin-orbit interaction. In analogy with the optical dual-channel directional coupler, the resonant tunneling effect is treated by the coupled-mode equations. We demonstrate that spin-up and -down electrons can be completely separated from each other for the system with an appropriate system geometry and a controllable barrier. Our result provides a new approach to construct spin-switching devices without containing any magnetic materials or applying a magnetic field. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2981204]
Resumo:
Electron spin-dependent transport properties have been theoretically investigated in two-dimensional electron gas (2DEG) modulated by the magnetic field generated by a pair of anti-parallel magnetization ferromagnetic metal stripes and the electrostatic potential provided by a normal metal Schottky stripe. It is shown that the energy positions of the spin-polarization extremes and the width of relative spin conductance excess plateau could be significantly manipulated by the electrostatic potential strength and width, as well as its position relative to the FM stripes. These interesting features are believed useful for designing the electric voltage controlled spin filters. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
An efficient fabrication scheme of buried ridge waveguide devices is demonstrated by UV-light imprinting technique using organic-in organic hybrid sol-gel Zr-doped SiO2 materials. The refractive indices of a guiding layer and a cladding layer for the buried ridge waveguide structure are 1.537 and 1.492 measured at 1550 nm, respectively. The tested results show more circular mode profiles clue to existence of the cladding layer. A buried ridge single-mode waveguide operating at 1550 nm has a low propagation loss (0.088 dB/cm) and the 1 x 2 MMI power splitter exhibits uniform outputs, with a very low splitting loss of 0.029 dB at 1549 nm.
Resumo:
A heterojunction structure photodetector was fabricated by evaporating a semitransparent Ni/Au metal film oil the InGaN/GaN structure. The photocurrent (PC) spectra show that both the Schottky junction (NiAu/InGaN) and the InGaN/GaN isotype heterojunction contribute to the PC signal which suggests that two junctions are connected in series and result in a broader spectral response of the device. Secondary electron, cathodoluminescence and electron-beam-induced current images measured from the same area of the edge surface clearly reveal the profile of the layer structure and distribution of the built-in electric field around the two junctions. A band diagram of the device is drawn based oil the consideration of the polarization effect at the InGaN/GaN interface. The analysis is consistent with the physical mechanism of a tandem structure of two junctions connected in series.
Resumo:
The basic idea of the finite element beam propagation method (FE-BPM) is described. It is applied to calculate the fundamental mode of a channel plasmonic polariton (CPP) waveguide to confirm its validity. Both the field distribution and the effective index of the, fundamental mode are given by the method. The convergence speed shows the advantage and stability of this method. Then a plasmonic waveguide with a dielectric strip deposited on a metal substrate is investigated, and the group velocity is negative for the fundamental mode of this kind of waveguide. The numerical result shows that the power flow direction is reverse to that of phase velocity.
Resumo:
The properties of plasmonic very small aperture lasers are shown: these integrate surface plasmon structures with very small aperture lasers. The transmission field can be confined to a spot of subwavelength width in the far field, and according to the finite difference time domain simulation results the focal length of the spot can be modulated using different ring periods. Scanning of the subwavelength gating in the far field has been realized numerically. Such a device can be used with a high-resolution far-field scanning optical microscope.