999 resultados para natural science


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new method has been developed to selectively fabricate nano-gap electrodes and nano-channels by conventional lithography. Based on a sacrificial spacer process, we have successfully obtained sub-100-nm nano-gap electrodes and nano-channels and further reduced the dimensions to 20 nm by shrinking the sacrificial spacer size. Our method shows good selectivity between nano-gap electrodes and nano-channels due to different sacrificial spacer etch conditions. There is no length limit for the nano-gap electrode and the nano-channel. The method reported in this paper also allows for wafer scale fabrication, high throughput, low cost, and good compatibility with modern semiconductor technology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate a novel oxide confined GaAs-based photonic crystal vertical cavity surface emitting laser (PC-VCSEL) operating at a wavelength of 850 nm based on coherent coupling. A ring-shaped light-emitting aperture is added to the conventional PC-VCSEL, and coherent coupling is achieved between the central defect aperture and the ring-shaped light-emitting aperture. Measurements show that under the continuous-wave (CW) injected current of 20 mA, a high power of 2 mW is obtained, and the side mode suppression ratio (SMSR) is larger than 20 dB. The average divergence angle is 4.2 degrees at the current level of 20 mA. Compared with the results ever reported, the divergence angle is reduced.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The slow light effect in a photonic crystal waveguide is investigated theoretically and experimentally. Theoretical calculation indicates that there is a slow light region for the even mode, from which the resonance and lasing in a microcavity would benefit. A photonic crystal waveguide microlaser is fabricated, which is related to the group velocity of c/120.6.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The control of the photonic crystal waveguide over the beam profile of vertical-cavity surface-emitting lasers is investigated. The symmetric slab waveguide model is adopted to analyze the control parameters, of the beam profile in the photonic-crystal vertical-cavity surface-emitting laser (PC-VCSEL). The filling factor (the ratio of the hole diameter to the lattice constant) and the etching depth control the divergence angle of the PC-VCSEL, and the low filling factor and the shallow etching depth are beneficial to achieve the low-divergence-angle beam. Two types of PC-VCSELs with different filling factors and etching depths are designed and fabricated. The experimental results show that the device with a lower filling factor and a shallower etching depth has a lower divergence angle, which agrees well with the theoretical predictions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrated oxide-confined 850-nm vertical-cavity surface-emitting lasers (VCSELs) with a two-dimensional petal-shaped holey structure composed of several annular-sector-shaped holes. Four types of devices with different hole numbers were designed and fabricated. The measured results showed that the larger hole number was beneficial to purifying the lasing mode, and realizing the single-mode operation. The side mode suppression ratio (SMSR) exceeded 30 dB throughout the entire drive current. Mode selective loss mechanism was used to explain the single-mode characteristic. The single-mode devices possessed good beam profiles, and the lowest divergence angle was as narrow as 3.2 degrees (full width at half maximum), attributed to the graded index profile and the shallow etching in the top distributed Bragg reflector (DBR).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Phase-locked oxide-confined ring-defect photonic crystal vertical-cavity surface-emitting laser is presented. The coupled-mode theory is employed to illustrate the two supermodes of the device, in-phase and out-of-phase supermode. Experimental results verify the two supermodes by the characteristics of the spectra and the far field patterns. At the lower current, only the out-of-phase supermode is excited, whereas under the higher current, the in-phase supermode also appears at the shorter wavelength range. In addition, the measured spectral separation between the two supermodes agrees well with the theoretical result.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The simulation of a plasmonic very-small-aperture laser is demonstrated in this paper. It is an integration of the surface plasmon structure and very-small-aperture laser (VSAL). The numerical results demonstrate that the transmission field can be confined to a spot with subwavelength width in the far field (3.5 mu m far from the emitting surface), and the output power density can be enhanced over 30 times of the normal VSAL. Such a device can be useful in the application of a high resolution far-field scanning optical microscope.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we construct (d, r) networks from sequences of different irrational numbers. In detail, segment an irrational number sequence of length M into groups of d digits which represent the nodes while two consecutive groups overlap by r digits (r = 0,1,...,d-1), and the undirected edges indicate the adjacency between two consecutive groups. (3, r) and (4, r) networks are respectively constructed from 14 different irrational numbers and their topological properties are examined. By observation, we find that network topologies change with different values of d, r and even sequence length M instead of the types of irrational numbers, although they share some similar features with traditional random graphs. We make a further investigation to explain these interesting phenomena and propose the identical-degree random graph model. The results presented in this paper provide some insight into distributions of irrational number digits that may help better understanding of the nature of irrational numbers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Nd:GdVO4 crystal is pumped directly into its emitting level at 913 nm for the first time to the best of our knowledge. 3.35 W output laser emitting at 1063 nm is achieved in a 1.1 at.% Nd-doped Nd:GdVO4. The crystal absorbs pumping light of 4.30 W at 913 nm and produces a very low quantity of heat with the opto-optic conversion efficiency of 77.2%. The average slope efficiency is 81.2% from 0.21 W, at the threshold, to 4.30 W of absorbed pump power. Because of the very weakly thermal effect, the near-diffraction-limit beam is easily obtained with beam quality factor of M-2 approximate to 1.1.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the dispersion properties of nanometer-scaled silicon waveguides with channel and rib cross section around the optical fiber communication wavelength and systematically study their relationship with the key structural parameters of the waveguide. The simulation results show that the introduction of an extra degree of freedom in the rib depth enables the rib waveguide more flexible in engineering the group velocity dispersion (GVD) compared with the channel waveguide. Besides, we get the structural parameters of the waveguides that can realize zero-GVD at 1550 nm.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tin disulfide (SnS2) nanocrystalline/amorphous blended phases were synthesized by mild chemical reaction. Both X-ray diffraction and transmission electron microscopy measurements demonstrate that the as-synthesized particles presented very small size, with a diameter of only a few nanometers. The photoluminescence (PL) spectrum suggests efficient splitting of photo-generated excitons in poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and SnS2 hybrid films. Organic/inorganic hybrid solar cells comprising MDMO-PPV and SnS2 were prepared, giving photovoltage, photocurrent, fill factor and efficiency values of 0.702 V, 0.549 mA/cm(2), 0.385 and 0.148%, respectively, which suggests that this phase-blended inorganic semiconductor can also serve as a promising solar energy material. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

FePt nanoparticles with average size of 9 nm were synthesized using a diblock polymer micellar method combined with plasma treatment. To prevent from oxidation under ambient conditions, immediately after plasma treatment, the FePt nanoparticle arrays were in situ transferred into the film-growth chamber where they were covered by an SiO2 overlayer. A nearly complete transformation of L1(0) FePt was achieved for samples annealed at temperatures above 700 A degrees C. The well control on the FePt stoichiometry and avoidance from surface oxidation largely enhanced the coercivity, and a value as high as 10 kOe was obtained in this study. An evaluation of magnetic interactions was made using the so-called isothermal remanence (IRM) and dc-demagnetization (DCD) remanence curves and Kelly-Henkel plots (Delta M measurement). The Delta M measurement reveals that the resultant FePt nanoparticles exhibit a rather weak interparticle dipolar coupling, and the absence of interparticle exchange interaction suggests no significant particle agglomeration occurred during the post-annealing. Additionally, a slight parallel magnetic anisotropy was also observed. The results indicate the micellar method has a high potential in preparing FePt nanoparticle arrays used for ultrahigh density recording media.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A broadband external cavity tunable laser is realized by using a broad-emitting spectral InAs/GaAs quantum dot (QD) gain device. A tuning range of 69 nm with a central wavelength of 1056 nm, is achieved at a bias of 1.25 kA/cm(2) only by utilizing the light emission from the ground state of QDs. This large tunable range only covers the QD ground-state emission and is related to the inhomogeneous size distribution of QDs. No excited state contributes to the tuning bandwidth. The application of the QD gain device to the external cavity tunable laser shows its immense potential in broadening the tuning bandwidth. By the external cavity feedback, the threshold current density can be reduced remarkably compared with the free-running QD gain device.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Epitaxial wurtzite InN thin films have been grown by metal-organic chemical vapor deposition on (1 1 1) SrTiO3 (STO) substrates. Interestingly, twin domain epitaxy induced by the surface reconstruction of STO is observed with the in-plane orientation relationships of [(1) over bar 1 0 0]InN parallel to [<(1)over bar > 1 0]STO and [2 <(1 1)over bar > 0]InN parallel to[<(1)over bar > 1 0]STO, which is helpful to release the strain. The InN films on STO substrates exhibit a strong photoluminescence emission around 0.78 eV. Particularly, using STO substrates opens up a possibility to integrate InN with the functional oxides. (C) 2009 Elsevier B.V. All rights reserved