956 resultados para limit of quantitation
Resumo:
Bismuth was evaluated as an internal standard for the direct determination of Pb in vinegar by graphite furnace atomic absorption spectrometry using Ru as a permanent modifier with co-injection of Pd/Mg(NO3)(2). The correlation coefficient of the graph plotted from the non-nalized absorbance signals of Bi versus Pb was r=0.989. Matrix effects were evaluated by analyzing the slope ratios between the analytical curve, and analytical curves obtained from Pb additions in red and white wine vinegar obtained from reference solutions prepared in 0.2% (v/v) HNO3, samples. The calculated ratios were around 1.04 and 1.02 for analytical curves established applying an internal standard and 1.3 and 1.5 for analvtical curves without. Analytical curves in the 2.5-15 pg L-1 Pb concentration interval were established using the ratio Pb absorbance to Bi absorbance versus analvte concentration, and typical linear correlations of r=0.999 were obtained. The proposed method was applied for direct determination of Pb in 18 commercial vinegar samples and the Pb concentration varied from 2.6 to 31 pg L-1. Results were in agreement at a 95% confidence level (paired t-test) with those obtained for digested samples. Recoveries of Pb added to vinegars varied from 96 to 108% with and from 72 to 86% without an internal standard. Two water standard reference materials diluted in vinegar sample were also analyzed and results were in agreement with certified values at a 95% confidence level. The characteristic mass was 40 pg Pb and the useful lifetime of the tube was around 1600 firings. The limit of detection was 0.3 mu g L-1 and the relative standard deviation was <= 3.8% and <= 8.3% (n = 12) for a sample containing, 10 mu L-1 Pb with and without internal standard, respectively. (C) 2007 Elsevier B.V. All rights reserved.
Flow injection amperometric detection of ascorbic acid using a Prussian Blue film-modified electrode
Resumo:
The PB film-modified electrode was used as an amperometric detector for flow injection analysis of ascorbic acid. The modified electrode detector showed good sensitivity, stability and reproducibility. The calibration curve for ascorbic acid was linear over the concentration range from 5.0 x 10(-6) to 1.0 x 10(-3) mol l(-1) with a slope of 19.9 mA mol(-1) per litre and a correlation coefficient of 0.999. The detection limit of this method was 2.49 x 10(-6) mol l(-1). The relative standard deviation of six replicate injections of 2.5 x 10(-4) mol l(-1) ascorbic acid was 2.5%. The results obtained for ascorbic acid determination in pharmaceutical products are in good agreement with those obtained by using the procedure involving the reaction between triiodide and ascorbic acid. (C) 2001 Elsevier B.V. B.V. All rights reserved.
Resumo:
Diode-pumped Yb-doped glass lasers have received considerable attention for applications such as high-power beam production or femtosecond pulses generation. In this paper, we evaluate the laser potential of three different glass families doped with Yb3+ : alkali lead fluorborate (PbO-PbF2-B2O3), heavy metal oxide (Bi2O3-PbO-Ga2O3) and niobium tellurite (TeO2-Nb2O5-K2O-Li2O). Spectroscopic properties were studied for the samples and calculations of the minimum laser pump intensity (I-min), saturation fluence (U-sat) and the theoretical limit of peak power (P-max) are also presented. A comparison of laser properties of these three different glasses and their importance is shown and analyzed. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
The characteristics, performance, and application of an electrode, namely Pt| Hg|Hg-2(DCF)(2)|graphite, where DCF stands for diclofenac ion, are described. This electrode responds to diclofenac with sensitivity of (58.1 +/- 0.8) mV/decade over the range 5.0 x 10(-5) to 1.0 x 10(-2) Mol l(-1) at pH 6.5-9.0 and a detection limit of 3.2 x 10(-5) mol l(-1). The electrode is easily constructed at a relatively low cost with fast response time (within 10-30 s) and can be used for a period of 5 months without any considerable divergence in potentials. The proposed sensor displayed good selectivity for diclofenac in the presence of several substances, especially concerning carboxylate and inorganic anions. It was used to determine diclofenac in pharmaceutical preparations by means of the standard additions method. The analytical results obtained by using this electrode are in good agreement with those given by the United States Pharmacopeia procedures. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
In this brief article we discuss spin-polarization operators and spin-polarization states of 2 + 1 massive Dirac fermions and find a convenient representation by the help of 4-spinors for their description. We stress that in particular the use of such a representation allows us to introduce the conserved covariant spin operator in the 2 + 1 field theory. Another advantage of this representation is related to the pseudoclassical limit of the theory. Indeed, quantization of the pseudoclassical model of a spinning particle in 2 + 1 dimensions leads to the 4-spinor representation as the adequate realization of the operator algebra, where the corresponding operator of a first-class constraint, which cannot be gauged out by imposing the gauge condition, is just the covariant operator previously introduced in the quantum theory.
Resumo:
A high-performance liquid chromatography (HPLC) method for the determination of acetaldehyde in fuel ethanol was developed. Acetaldehyde was derivatized with 0.900 mL 2,4-dinitrophenylhydrazine (DNPHi) reagent and 50 mu L phosphoric acid 1 mol L-1 at a controlled room temperature of 15 degrees C for 20 min. The separation of acetaldehyde- DNPH (ADNPH) was carried out on a Shimadzu Shim-pack C-18 column, using methanol/LiCl(aq) 1.0 mM (80/20, v/v) as a mobile phase under isocratic elution and UV-Vis detection at 365 nm. The standard curve of ADNPH was linear in the range 3-300 amg L-1 per injection (20 mu L) and the limit of detection (LOD) for acetaldehyde was 2.03 mu g L-1, with a correlation coefficient greater than 0.999 and a precision (relative standard deviation, RSD) of 5.6% (n=5). Recovery studies were performed by fortifying fuel samples with acetaldehyde at various concentrations and the results were in the range 98.7-102%, with a coefficient of variation (CV) from 0.2% to 7.2%. Several fuel samples collected from various gas stations were analyzed and the method was successfully applied to the analysis of acetaldehyde in fuel ethanol samples.
Resumo:
In this work the independent particle model formulation is studied as a mean-field approximation of gauge theories using the path integral approach in the framework of quantum electrodynamics in 1 + 1 dimensions. It is shown how a mean-field approximation scheme can be applied to fit an effective potential to an independent particle model, building a straightforward relation between the model and the associated gauge field theory. An example is made considering the problem of massive Dirac fermions on a line, the so called massive Schwinger model. An interesting result is found, indicating a behaviour of screening of the charges in the relativistic limit of strong coupling. A forthcoming application of the method developed to confining potentials in independent quark models for QCD is in view and is briefly discussed.
Resumo:
Levodopa (L-dopa), the biological precursor of catecholamines, is the most widely prescribed drug in the treatment of Parkinson's disease. The present work presents a proposal for the application of a gold screen-printed electrode an electrochemical sensor for monitoring L-dopa in stationary solution and a flow system. Using the electrooxidation of L-dopa at +0.63 V in acetate buffer pH 3.0 on a gold screen-printed electrode it is possible to obtain a linear calibration curve from 9.9 x 10(-5) to 1.2 x 10(-3) mol L-1 and a detection limit of 6.8 x 10(-5) mol L-1. Under amperometric conditions (E-app = 0.8 V; flow rate = 14.1 ml, min(-1); pH 3.0), an analytical calibration graph for L-dopa was obtained from 1.0 x 10(-6) mol L-1 6.6 x 10(-4) mol L-1 with a detection limit of 9.9 x 10(-7) mol L-1. The method was successfully applied to the determination of L-dopa in commercial dosage forms without any pre-treatment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Remazol brilliant orange 3R shows only a voltammetric peak for the reduction of the azo group. No peak was observed for the reduction of the sulfatoethylsulfone or vinylsulfone reactive groups. The reduction of a pre-protonated ate group involving a two-electron process, gives a hydrate derivative in acidic solution. In alkaline solution the reduction process occurs at more negative potential with the formation of an unstable hydrate compound which decomposes via HN-NH bond cleavage and loss of a sulfate group. Optimum conditions are given for the cathodic stripping voltammetric determination of dir: dye in aqueous solution. The optimum accumulation potential and time were 0 V and up to 60 s, respectively. Linear calibration graphs were obtained from 30 to 300 ng ml(-1) in pH 4 and 6.2 to 62 ng ml(-1) in pH 10. The limit of determination obtained was 1.5 ng ml(-1) (pH 10). The coefficient of variation was 2.6% (n = 7) at 62 ng ml(-1) of the reactive dye. (C) 1999 Elsevier B.V. B.V. All rights reserved.
Resumo:
A sensor based on graphite electrode modified with palladium-platinum-palladium film is proposed for phosphite determination by flow-injection amperometry. The modified electrode was prepared by a sequential cathodic deposition of Pd, Pt and Pd on a graphite electrode from 0.5% m/v PdCl2 + 28% m/v NH4OH and 2% m/v H2PtCl6 + 10% v/v H2SO4 solutions. After suitable conditioning, the electrode showed catalytic activity for phosphite oxidation when 0. 15 V was applied. The proposed system handles approximately 50 samples per hour (0.0.1 - 0.05 mol L-1 Na-2 HPO3; R-2 = 0.9997), consuming ca. 70 mu L of sample per determination. The limit of detection and amperometric sensibility were 5 X 10(-4) mol L-1 and 1.5 mA L mol(-1), respectively. The proposed method was applied to analysis of fertilizer samples without pre-treatment. Results are in agreement with those obtained by spectrophotometry and titrimetry at 95% confidence level and good recoveries (96-109%) of spiked samples were found. Relative standard deviation (n=12) of a 0.01 mol L-1 Na2HPO3 sample was 2%. The useful lifetime of modified electrode was around 220 determinations. For routine purposes it means that this electrode can be continuously used for 5 hours.
Resumo:
The purpose of this paper is to develop an electroanalytical method based on square-wave voltammetry (SWV) for the determination of the solvent blue 14 (SB-14) in fuel samples. The electrochemical reduction of SB-14 at glassy carbon electrode in a mixture of Britton-Robinson buffer with N,N-dimethyiformamide (1:1, v/v) presented a well-defined peak at-0.40 V vs. Ag/AgCl. All parameters of the SWV technique were optimized and the electroanalytical method presented a linear response from 1.0 x 10(-6) to 6.0 x 10(-6) mol L-1 (r = 0.998) with a detection limit of 2.90 x 10(-7) mol L-1. The developed method was successfully utilized in the quantification of the dye SB-14 in kerosene and alcohol samples with average recovery from 93.00 to 98.10%.
Resumo:
A gas chromatography-mass-selective (GC-MS) detection method to determine buprofezin, pyridaben, and tebufenpyrad on the pulp, peel, and whole fruit of clementines is described. The extraction/partition procedure was performed in one step and no cleanup was necessary with the GC-MS in the SIM-mode pesticide determination. Recovery ranged from 75 to 124% with coefficients of variance ranging between 1 and 13%. The limit of determination was 0.01 mg/kg for all pesticides. The field trials showed a similar degradative behavior for all active ingredients (AI), with a great residue decrease during the first week and stability in the second. Just after treatment buprofezin and tebufenpyrad showed lower residues than the maximum residue limit (MRL) fixed in Italy, while pyridaben was below the MRL after a week.
Resumo:
Screen-printed carbon electrode (SPCE) modified with poly-L-histidine film can be successfully applied for chromium(VI) determination based on its pre-concentration. Optimum adherence and stability of the POIY-L-histidine film was obtained by direct addition of PH solution 1% (w/v) on the electrode surface, followed by heating at 80 degrees C during 5 min. Linear response range, sensitivity and limit of detection were 0. 1-150 [mu mol L-1, 4. 13 LA mu mol L` and 0.046 mu mol L-1. The repeatability of the proposed sensor, evaluated in terms of relative standard deviation, was measured as 3.2% for 10 experiments in 40 mu mol L-1 using the same electrode and 4.0% using screen-printed electrode as disposable sensor, respectively. The voltammetric sensor was applied to determination of Cr(VI) and indirect determination of Cr(III) in wastewater samples previously treated by a leather dyeing industry and the average recovery for these samples was around 97%. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
A highly sensitive adsorptive stripping procedure for trace measurement of the anticancer drug tamoxifen is described. The method is based on controlled adsorptive accumulation of the drug at an electrochemically treated glassy carbon electrode, followed by chronopotentiometric measurement of the surface species. The chronopotentiometric operation effectively addresses the large background contribution inherent to the glassy carbon electrode to yield a detection limit of 4 x 10(-10) M after 4 min preconcentration. The adsorptive stripping response is evaluated with respect to electrode type and conditioning, accumulation potential and lime, stripping current, pH, drug concentration, potential interferences, and other variables. Applicability to urine samples is illustrated. (C) 1997 Elsevier B.V. B.V.
Resumo:
The magnetic circular dichroism (MCD) of F2+ centers in KCl:SH- has been measured in absorption in the 1ssigma(g) --> 2p(y)pi(u) transitions at 493 and 509 nm, with fields up to 5 T and in the temperature range 1.5 K < T < 77 K. Within the limit of detection, no MCD is observed in the near infrared transition 1ssigma(g) --> 2psigma(u) as well as in both emissions 2ppi(u) --> 1ssigma(g) and 2psigma(u) --> 1ssigma(g). The optical detection of EPR in the F2+ ground state presents an isotropic single band with g = 1.965 +/- 0.007. The spin-lattice relaxation measured at H = 0.32 T is typical of a direct process T-1 = 4.3 x 10(-2_ coth (gmu(B)H/2k(B)T). The spectral variation of the MCD is calculated using perturbation theory to first order. The Hamiltonian includes the spin-orbit interaction in the 2ppi(u) excited state and the orbital molecular wave functions are obtained by a linear combination of 1s and 2p atomic orbitals. The calculated MCD is in good agreement with the observed one, for the spin-orbit interaction strength Pound(z) = 3.6 meV.