988 resultados para deep levels


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep level transient spectroscopy (DLTS) and thermally stimulated current spectroscopy (TSC) have been used to investigate defects in semi-conducting and semi-insulating (SI) InP after high temperature annealing, respectively. The results indicate that the annealing in iron phosphide ambient has an obvious suppression effect of deep defects, when compared with the annealing in phosphorus ambient. A defect annihilation phenomenon has also been observed in Fe-doped SI-InP materials after annealing. Mechanism of defect formation and annihilation related to in-diffusion of iron and phosphorus is discussed. Nature of the thermally induced defects has been discussed based on the results. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The distribution of energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring was investigated by applying the effective mass approximation and the perturbation method. In 2D polar coordinates, the exact solution to the Schrodinger equation was used to calculate the perturbation integral in a parabolic confinement potential. The numerical results show that the energy levels of electron are sensitively dependent on the radius of the quantum ring and a minimum exists on account of the parabolic confinement potential. With decreasing the radius, the energy spacing between energy levels increases. The degenerate energy levels of the first excited state for hydrogenic impurities are not relieved, and when the degenerate energy levels are split and the energy spacing will increase with the increase in the radius. The energy spacing between energy levels of electron is also sensitively dependent on the angular frequency and will increase with the increases in it. The degenerate energy levels of the first excited state are not relieved. The degenerate energy levels of the second excited state are relieved partially. The change in angular frequency will have a profound effect upon the calculation of the energy levels of the ground state and the low-lying excited states of hydrogenic impurities in InAs quantum ring. The conclusions of this paper will provide important guidance to investigating the optical transitions and spectral structures in quantum ring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dependence of the electronic energy levels on the size of quantum dots (QDs) with the shape of spherical lens is studied by using the B-spline technique for the first time. Within the framework of the effective-mass theory, the values of electronic energy levels are obtained as a function of the height, radius and volume of QDs, respectively. When the height or radius of QDs increases, all the electronic energy levels lower, and the separations between the energy levels decrease. For lens-shape QDs, height is the key factor in dominating the energy levels comparing with the effect of radius, especially in dominating the ground-state level. These computational results are compared with that of other theoretical calculation ways. The B-spline technique is proved to be an effective way in calculating the electronic structure in QDs with the shape of spherical lens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calculations of electronic structures and optical properties of Mg (or Si) and Mn co-doped GaN were carried out by means of first-principle plane-wave pesudopotential (PWP) based on density functional theory - The spin polarized impurity bands of deep energy levels were found for both systems. They are half metallic and suitable for spin injectors. Compared with GaN Mn, GaN Mn-Mg exhibits a significant increase in T-C 1 while the 1.3 eV absorption peak in GaN Mn disappears due to addition of Mg. In addition, a strong absorption peak due to T-4(1) (F) -> T-4(2) (F) transition of Mn4+ were observed near 1.1 eV. Nevertheless, GaN Mn-Si failed to show increase of T-C, and the absorption peak was not observed at the low energy side.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep defects in annealed InP have been investigated by deep level transient capacitance spectroscopy (DLTS), photo induced current transient spectroscopy (PICTS) and thermally stimulated current spectroscopy (TSC). Both DLTS results of annealed semiconducting InP and PICTS and TSC results of annealed semi-insulating InP indicate that InP annealed in phosphorus ambient has five defects, while lid? annealed in iron phospbide ambient has two defects. Such a defect formation phenomenon is explained in terms of defect suppression by the iron atom diffusion process. The correlation of the defects and the nature of the defects in annealed InP are discussed based on the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep level defects in high temperature annealed semi-conducting InP have been studied by deep level transient spectroscopy (DLTS). There is obvious difference in the deep defects between as-grown InP, InP annealed in phosphorus ambient and iron phosphide ambient, as far as their quantity and concentration are concerned. Only two defects at 0.24 and 0.64 eV can be detected in InP annealed in iron phosphide ambient, while defects at 0.24, 0.42, 0.54 and 0.64 eV have been detected in InP annealed in phosphorus ambient, in contrast to two defects at 0.49 and 0.64 eV or one defect at 0.13 eV in as-grown InP. A defect suppression phenomenon related to iron diffusion process has been observed. The formation mechanism and the nature of the defects have been discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When a quantum dot is suffering an AC gate voltage, the sidebands turn up beside the static levels of the dot. We formularized the conductance and current when the effective coupling between levels in the quantum dot induced by the hybrid terms is included using a bi-unitary transform method, and we investigated the interference of the photon sidebands of deferent levels. The interference occurs if the same sidebands of deferent levels overlap, which is possible only when the static levels lie close to and overlap with each other. The overlap of different photon sidebands leads to a simple non-coherent superposition. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hall, current-voltage, and deep-level transient spectroscopy measurements were used to characterize the electrical properties of metalorganic chemical vapor deposition grown undoped, Er- and Pr-implanted GaN films. Only one deep level located at 0.270 eV below the conduction band was found in the as-grown GaN films. However, four defect levels located at 0.300, 0.188, 0.600, and 0.410 eV below the conduction band were found in the Er-implanted GaN films after annealing at 900 degrees C for 30 min, and four defect levels located at 0.280, 0.190, 0.610, and 0.390 eV below the conduction band were found in the Pr-implanted GaN films after annealing at 1050 degrees C for 30 min. The origins of the deep defect levels are discussed. (C) 2005 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The subbands of the ground state E-c1, the first excited state E-c2 and heavy hole state E-HH1 are calculated by solving the eigenvalues of effective-mass Hamiltonian H-0 which is derived from eight-band k . p theory and the calculations are performed at k(x) = k, = k = 0 for the three-dimensional array of InGaAs/GaAs quantum dots (QDs). With indium content in InGaAs QDs gradually increasing from 30% to 100%,the intersubband transition wavelength of E-c2 to E-c1, blue-shifts from 18.50 to 11.87 mu m,while the transition wavelength of E-c1, to E-HH1, red-shifts from 1. 04 to 1. 73 mu m. With the sizes of Ir-0.5 Ga-0.5 As and InAs QDs increasing from 1.0 to 5.0 nm, the intersubband transition from E-c1, to E-C2 transforms from bound-state-to-continuum-state to bound-state-to-bound-state, and the corresponding intersubband transition wavelengths red-shift from 8.12 pm (5.90 pm) to 53.47 mu m (31.87 pm), respectively, and the transition wavelengths of E-C1 to E-HH1 red-shift from 1. 13 mu m (1.60 mu m) to 1.27 mu m (2.01 mu m), respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep level defects in as-grown and annealed n-type and semi-insulating InP have been studied. After annealing in phosphorus ambient, a large quantity of deep level defects were generated in both n-type and semi-insulating InP materials. In contrast, few deep level defects exist in InP after annealing in iron phosphide ambient. The generation of deep level defects has direct relation with in-diffusion of iron and phosphorus in the annealing process. The in-diffused phosphorus and iron atoms occupy indium sites in the lattice, resulting in the formation of P anti-site defects and iron deep acceptors, respectively. T e results indicate that iron atoms fully occupy indium sites and suppress the formation of indium vacancy and P anti-site, etc., whereas indium vacancies and P anti-site defects. are formed after annealing in phosphor-us ambient. The nature of the deep level defects in InP has been studied based on the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we analyze and compare electrical compensation and deep level defects in semi-insulating ( SI) materials prepared by Fe-doping and high temperature annealing of undoped InP. Influence of deep level defects in the SI-InP materials on the electrical compensation has been studied thermally stimulated current spectroscopy (TSC). Electrical property of the Fe-doped SI-InP is deteriorated due to involvement of a high concentration of deep level defects in the compensation. In contrast, the concentration of deep defects is very low in high temperature annealed undoped SI-InP in which Fe acceptors formed by diffusion act as the only compensation centre to pin the Fermi level, resulting in excellent electrical performance. A more comprehensive electrical compensation model of SI-InP has been given based on the research results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deep level luminescence of crack-free Al0.25Ga0.75N layers grown on a GaN template with a high-temperature grown AlN interlayer has been studied using spatially resolved cathodoluminescence (CL) spectroscopy. The CL spectra of Al0.25Ga0.75N grown on a thin AlN interlayer present a deep level aquamarine luminescence (DLAL) band at about 2.6 eV and a deep level violet luminescence (DLVL) band at about 3.17 eV. Cross-section line scan CL measurements on a cleaved sample edge clearly reveal different distributions of DLAL-related and DLVL-related defects in AlGaN along the growth direction. The DLAL band of AlGaN is attributed to evolve from the yellow luminescence band of GaN, and therefore has an analogous origin of a radiative transition between a shallow donor and a deep acceptor. The DLVL band is correlated with defects distributed near the GaN/AlN/AlGaN interfaces. Additionally, the lateral distribution of the intensity of the DLAL band shows a domainlike feature which is accompanied by a lateral phase separation of Al composition. Such a distribution of deep level defects is probably caused by the strain field within the domains. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deep level defects in annealed InP have been studied by using photoluminescence spectroscopy (PL), thermally stimulated current (TSC), deep level transient spectroscopy (DLTS), and positron annihilation lifetime (PAL). A noticeable broad PL peak centered at 1.3 eV has been observed in the InP sample annealed in iron phosphide ambient. Both the 1.3 eV PL emission and a defect at E-C-0.18 eV correlate with a divacancy detected in the annealed InP sample. The results make a divacancy defect and related property identified in the annealed InP. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under identical preparation conditions, Au/GaN Schottky contacts were prepared on two kinds of GaN epilayers with significantly different background electron concentrations and mobility as well as yellow emission intensities. Current-voltage (I-V) and variable-frequency capacitance-voltage (C-V) characteristics show that the Schottky contacts on the GaN epilayer with a higher background carrier concentration and strong yellow emission exhibit anomalous reverse-bias I-V and C-V characteristics. This is attributed to the presence of deep level centers. Theoretical simulation of the low-frequency C-V curves leads to a determination of the density and energy level position of the deep centers. (c) 2006 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Confirmation of quantum dot lasing have been given by photoluminescence and electro-luminescence spectra. Energy levels of QD laser are distinctively resolved due to band filling effect, and the lasing energy of quantum dot laser is much lower than quantum well laser. The energy barrier at InAs/GaAs interface due to the built-in strain in self-organized system has been determined experimentally by deep level transient spectroscopy (DLTS). Such barrier has been predicted by previous theories and can be explained by the apexes appeared in the interface between InAs and GaAs caused by strain.