946 resultados para computational fluid-dynamics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent work by Siegelmann has shown that the computational power of recurrent neural networks matches that of Turing Machines. One important implication is that complex language classes (infinite languages with embedded clauses) can be represented in neural networks. Proofs are based on a fractal encoding of states to simulate the memory and operations of stacks. In the present work, it is shown that similar stack-like dynamics can be learned in recurrent neural networks from simple sequence prediction tasks. Two main types of network solutions are found and described qualitatively as dynamical systems: damped oscillation and entangled spiraling around fixed points. The potential and limitations of each solution type are established in terms of generalization on two different context-free languages. Both solution types constitute novel stack implementations - generally in line with Siegelmann's theoretical work - which supply insights into how embedded structures of languages can be handled in analog hardware.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Malaria, caused by Plasmodium falciparum (P. falciparum), ranks as one of the most baleful infectious diseases worldwide. New antimalarial treatments are needed to face existing or emerging drug resistant strains. Protein degradation appears to play a significant role during the asexual intraerythrocytic developmental cycle (IDC) of P. falciparum. Inhibition of the ubiquitin proteasome system (UPS), a major intracellular proteolytic pathway, effectively reduces infection and parasite replication. P. falciparum and erythrocyte UPS coexist during IDC but the nature of their relationship is largely unknown. We used an approach based on Tandem Ubiquitin-Binding Entities (TUBEs) and 1D gel electrophoresis followed by mass spectrometry to identify major components of the TUBEs-associated ubiquitin proteome of both host and parasite during ring, trophozoite and schizont stages. Ring-exported protein (REX1), a P. falciparum protein located in Maurer's clefts and important for parasite nutrient import, was found to reach a maximum level of ubiquitylation in trophozoites stage. The Homo sapiens (H. sapiens) TUBEs associated ubiquitin proteome decreased during the infection, whereas the equivalent P. falciparum TUBEs-associated ubiquitin proteome counterpart increased. Major cellular processes such as DNA repair, replication, stress response, vesicular transport and catabolic events appear to be regulated by ubiquitylation along the IDC P. falciparum infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades due to the progress in the area of nonlinear dynamics. This article discusses several applications of fractional calculus in science and engineering, namely: the control of heat systems, the tuning of PID controllers based on fractional calculus concepts and the dynamics in hexapod locomotion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the new package entitled Simulator of Intelligent Transportation Systems (SITS) and a computational oriented analysis of traffic dynamics. The SITS adopts a microscopic simulation approach to reproduce real traffic conditions considering different types of vehicles, drivers and roads. A set of experiments with the SITS reveal the dynamic phenomena exhibited by this kind of system. For this purpose a modelling formalism is developed that embeds the statistics and the Laplace transform. The results make possible the adoption of classical system theory tools and point out that it is possible to study traffic systems taking advantage of the knowledge gathered with automatic control algorithms. A complementary perspective for the analysis of the traffic flow is also quantified through the entropy measure.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fractional Calculus (FC) goes back to the beginning of the theory of differential calculus. Nevertheless, the application of FC just emerged in the last two decades due to the progress in the area of nonlinear dynamics. This article discusses several applications of fractional calculus in science and engineering, namely: the control of heat systems, the tuning of PID controllers based on fractional calculus concepts and the dynamics in hexapod locomotion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of the interaction between hair filaments and formulations or peptides is of utmost importance in fields like cosmetic research. Keratin intermediate filaments structure is not fully described, limiting the molecular dynamics (MD) studies in this field although its high potential to improve the area. We developed a computational model of a truncated protofibril, simulated its behavior in alcoholic based formulations and with one peptide. The simulations showed a strong interaction between the benzyl alcohol molecules of the formulations and the model, leading to the disorganization of the keratin chains, which regress with the removal of the alcohol molecules. This behavior can explain the increase of peptide uptake in hair shafts evidenced in fluorescence microscopy pictures. The model developed is valid to computationally reproduce the interaction between hair and alcoholic formulations and provide a robust base for new MD studies about hair properties. It is shown that the MD simulations can improve hair cosmetic research, improving the uptake of a compound of interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the hip joint formulation on the kinematic response of the model of human gait is investigated throughout this work. To accomplish this goal, the fundamental issues of the modeling process of a planar hip joint under the framework of multibody systems are revisited. In particular, the formulations for the ideal, dry, and lubricated revolute joints are described and utilized for the interaction of femur head inside acetabulum or the hip bone. In this process, the main kinematic and dynamic aspects of hip joints are analyzed. In a simple manner, the forces that are generated during human gait, for both dry and lubricated hip joint models, are computed in terms of the system’s state variables and subsequently introduced into the dynamics equations of motion of the multibody system as external generalized forces. Moreover, a human multibody model is considered, which incorporates the different approaches for the hip articulation, namely ideal joint, dry, and lubricated models. Finally, several computational simulations based on different approaches are performed, and the main results presented and compared to identify differences among the methodologies and procedures adopted in this work. The input conditions to the models correspond to the experimental data capture from an adult male during normal gait. In general, the obtained results in terms of positions do not differ significantly when the different hip joint models are considered. In sharp contrast, the velocity and acceleration plotted vary significantly. The effect of the hip joint modeling approach is clearly measurable and visible in terms of peaks and oscillations of the velocities and accelerations. In general, with the dry hip model, intra-joint force peaks can be observed, which can be associated with the multiple impacts between the femur head and the cup. In turn, when the lubricant is present, the system’s response tends to be smoother due to the damping effects of the synovial fluid.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this chapter, the fundamental ingredients related to formulation of the equations of motion for multibody systems are described. In particular, aspects such as degrees of freedom, types of coordinates, basic kinematics joints and types of analysis in multibody systems are briefly characterized. Illustrative examples of application are also presented to better clarify the fundamental issues for spatial rigid multibody systems, which are of crucial importance in the formulation development of mathematical models of mechanical systems, as well as its computational implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

"Series title: Computational methods in applied sciences, ISSN1871-3033, vol. 42"

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El objetivo del presente proyecto es estudiar los procesos físicos y químicos del radical OH con compuestos orgánicos volátiles (COVs), con los cuales sea factible la formación de agregados de van der Waals (vdW) responsables de la curvatura en los gráficos de Arrhenius, empleando técnicas modernas, complementarias entre si y novedosas en el país. El problema será abordado desde tres perspectivas complementarias: 1) estudios cinéticos, 2) estudios mecanísticos y de distribución de productos y 3) estudios de la dinámica de los procesos físicos y químicos. La finalidad es alcanzar una mejor comprensión de los mecanismos que intervienen en el comportamiento químico de especies presentes en la atmósfera y obtener datos cinéticos de alta calidad que puedan alimentar modelos computacionales capaces de describir la composición de la atmósfera, presente y futura. Los objetivos son estudiar: 1) mediante fotólisis láser pulsada con detección por fluorescencia inducida por láser (PLP-LIF), en reactores de flujo, la cinética de reacción del radical OH(v”=0) con COVs que presentan gráficos de Arrhenius curvos con energías de activación negativas, tales como alcoholes insaturados, alquenos halogenados, éteres halogenados, ésteres alifáticos; 2) en una cámara de simulación de condiciones atmosféricas de gran volumen (4500 L), la identidad y el rendimiento de productos de las reacciones mencionadas, a fines de evaluar su impacto atmosférico y dilucidar los mecanismos de reacción; 3) mediante haces moleculares y espectroscopía láser, la estructura y reactividad de complejos de vdW entre alcoholes insaturados o aromáticos (cresoles) y el radical OH, como modelo de los aductos propuestos como responsables de la desviación al comportamiento de Arrhenius de las reacciones mencionadas; 4) mediante PLP-LIF y expansiones supersónicas, las constantes específicas estado a estado (ksts) de relajación/reacción del radical OH(v”=1-4) vibracionalmente excitado con los COVs mencionados. Los resultados experimentales obtenidos serán contrastados con cálculos ab-initio de estructura electrónica, los cuales apoyarán las interpretaciones, permitirán proponer estructuras de estados de transición y aductos colisionales, como así también calcular las frecuencias de vibración de los complejos de vdW para su posterior asignación en los espectros LIF y REMPI. Asimismo, los mecanismos de reacción propuestos y los parámetros cinéticos medidos experimentalmente serán comparados con aquellos obtenidos por cálculos teóricos. The aim of this project is to study the physical and chemical processes of OH radicals with volatile organic compounds (VOCs) with which the formation of van der Waals (vdW) clusters, responsible for the observed curvature in the Arrhenius plots, might be feasible. The problem will be addressed as follow : 1) kinetic studies; 2) products distribution and mechanistic studies and 3) dynamical studies of the physical and chemical processes. The purpose is to obtain a better understanding of the mechanisms that govern the chemical behavior of species present in the atmosphere and to obtain high quality kinetic data to be used as input to computational models. We will study: 1) the reaction kinetics of OH (v”=0) radicals with VOCs such as unsaturated alcohols, halogenated alkenes, halogenated ethers, aliphatic esters, which show curved Arrhenius plots and negative activation energies, by PLP-LIF, in flow systems; 2) in a large volume (4500 L) atmospheric simulation chamber, reaction products yields in order to evaluate their atmospheric impact and reaction mechanisms; 3) using molecular beams and laser spectroscopy, the structure and reactivity of the vdW complexes formed between the unsaturated or aromatic alcohols and the OH radicals as a model of the adducts proposed as responsible for the non-Arrhenius behavior; 4) the specific state-to-state relaxation/reaction rate constants (ksts) of the vibrationally excited OH (v”=1-4) radical with the VOCs by PLP-LIF and supersonic expansions. Ab-initio calculations will be carried out to support the interpretation of the experimental results, to obtain the transition state and collisional adducts structures, as well as to calculate the vibrational frequencies of the vdW complexes to assign to the LIF and REMPI spectra. Also, the proposed reaction mechanisms and the experimentally measured kinetic parameters will be compared with those obtained from theoretical calculations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the properties of the well known Replicator Dynamics when applied to a finitely repeated version of the Prisoners' Dilemma game. We characterize the behavior of such dynamics under strongly simplifying assumptions (i.e. only 3 strategies are available) and show that the basin of attraction of defection shrinks as the number of repetitions increases. After discussing the difficulties involved in trying to relax the 'strongly simplifying assumptions' above, we approach the same model by means of simulations based on genetic algorithms. The resulting simulations describe a behavior of the system very close to the one predicted by the replicator dynamics without imposing any of the assumptions of the analytical model. Our main conclusion is that analytical and computational models are good complements for research in social sciences. Indeed, while on the one hand computational models are extremely useful to extend the scope of the analysis to complex scenar

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the properties of the well known Replicator Dynamics when applied to a finitely repeated version of the Prisoners' Dilemma game. We characterize the behavior of such dynamics under strongly simplifying assumptions (i.e. only 3 strategies are available) and show that the basin of attraction of defection shrinks as the number of repetitions increases. After discussing the difficulties involved in trying to relax the 'strongly simplifying assumptions' above, we approach the same model by means of simulations based on genetic algorithms. The resulting simulations describe a behavior of the system very close to the one predicted by the replicator dynamics without imposing any of the assumptions of the mathematical model. Our main conclusion is that mathematical and computational models are good complements for research in social sciences. Indeed, while computational models are extremely useful to extend the scope of the analysis to complex scenarios hard to analyze mathematically, formal models can be useful to verify and to explain the outcomes of computational models.